Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
124 result(s) for "Hamilton, Sara E."
Sort by:
Normalizing the environment recapitulates adult human immune traits in laboratory mice
The immune system of laboratory mice raised in an ultra-hygienic environment resembles that ofnewborn humans, but can be induced to resemble the immune system of adult humans or 'dirty' mice by co-housing with pet store-bought mice. Do 'dirty' mice make better immunological models? The laboratory mouse is by far the dominant model organism for in vivo immunological research which — particularly in the light of disappointing results obtained with some recent transfers of disease treatments from laboratory to clinic — raises the question of how accurately the model reflects the human immune system. These authors compare the immune status of laboratory mice with that of feral mice and with mice bought commercially as pets. They find that the immune system of the ubiquitous laboratory 'specific pathogen free' mouse approximates that of human neonates, rather than human adults. Co-housing laboratory mice with 'pet store' mice leads to maturation of the immune system, making it more similar to that of the human adult, and resulting in increased resistance in several models of infection. The use of such 'dirty' mice could supplement current models to either increase translational potential to human disease or to better inform the efficacy of preclinical prophylactic and therapeutic modalities. Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 . Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice—like newborn, but not adult, humans—lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.
Contributions of natural killer cells to the immune response against Plasmodium
Natural killer (NK) cells are important innate effector cells that are well described in their ability to kill virally-infected cells and tumors. However, there is increasing appreciation for the role of NK cells in the control of other pathogens, including intracellular parasites such as Plasmodium , the cause of malaria. NK cells may be beneficial during the early phase of Plasmodium infection—prior to the activation and expansion of antigen-specific T cells—through cooperation with myeloid cells to produce inflammatory cytokines like IFNγ. Recent work has defined how Plasmodium can activate NK cells to respond with natural cytotoxicity, and inhibit the growth of parasites via antibody-dependent cellular cytotoxicity mechanisms (ADCC). A specialized subset of adaptive NK cells that are negative for the Fc receptor γ chain have enhanced ADCC function and correlate with protection from malaria. Additionally, production of the regulatory cytokine IL-10 by NK cells prevents overt pathology and death during experimental cerebral malaria. Now that conditional NK cell mouse models have been developed, previous studies need to be reevaluated in the context of what is now known about other immune populations with similarity to NK cells (i.e., NKT cells and type I innate lymphoid cells). This brief review summarizes recent findings which support the potentially beneficial roles of NK cells during Plasmodium infection in mice and humans. Also highlighted are how the actions of NK cells can be explored using new experimental strategies, and the potential to harness NK cell function in vaccination regimens.
Severe malaria enforces short-lived effector cell differentiation but does not prevent effective secondary responses by memory CD8 T cells
Parasitic infections are a major worldwide health burden, yet most studies of CD8 T cell differentiation focus on acute viral and bacterial infections. To understand effector and memory CD8 T cell responses during erythrocytic malaria infection in mice, we utilized transgenic OT-I T cells and compared CD8 T cell responses between infection with OVA-expressing strains of Listeria monocytogenes (Lm) and Plasmodium berghei ANKA (PbA). We find that CD8 T cells expand vigorously during both infections. However, in contrast to Lm infection, PbA infection induces T cells that are heavily biased toward an IL-7Ra-deficient and KLRG1+ short-lived effector cell (SLEC) phenotype at the expense of memory precursor effector cell (MPECs) formation. PbA-induced inflammation, including IFNγ, is partially responsible for this outcome. Following treatment with antimalarial drugs and T cell contraction, PbA-primed memory T cells are rarely found in the blood and peripheral tissues but do maintain a low presence in the spleen and bone marrow. Despite these poor numbers, PbA memory T cells robustly expand upon vaccination or viral infection, control pathogen burden, and form secondary memory pools. Thus, despite PbA enforced SLEC formation and limited memory, effective secondary responses can still proceed.
Virtual memory CD8 T cells display unique functional properties
Previous studies revealed the existence of foreign antigen-specific memory phenotype CD8 T cells in unimmunized mice. Considerable evidence suggests this population, termed “virtual memory” (VM) CD8 T cells, arise via physiological homeostatic mechanisms. However, the antigen-specific function of VM cells is poorly characterized, and hence their potential contribution to immune responses against pathogens is unclear. Here we show that naturally occurring, polyclonal VM cells have unique functional properties, distinct from either naïve or antigen-primed memory CD8 T cells. In striking contrast to conventional memory cells, VM cells showed poor T cell receptor-induced IFN-γ synthesis and preferentially differentiated into central memory phenotype cells after priming. Importantly, VM cells showed efficient control of Listeria monocytogenes infection, indicating memory-like capacity to eliminate certain pathogens. These data suggest naturally arising VM cells display unique functional traits, allowing them to form a bridge between the innate and adaptive phase of a response to pathogens.
Targeting glutamine metabolism rescues mice from late-stage cerebral malaria
The most deadly complication ofPlasmodium falciparuminfection is cerebral malaria (CM) with a case fatality rate of 15–25% in African children despite effective antimalarial chemotherapy. There are no adjunctive treatments for CM, so there is an urgent need to identify new targets for therapy. Here we show that the glutamine analog 6-diazo-5-oxo-L-norleucine (DON) rescues mice from CM when administered late in the infection a time at which mice already are suffering blood–brain barrier dysfunction, brain swelling, and hemorrhaging accompanied by accumulation of parasite-specific CD8⁺ effector T cells and infected red blood cells in the brain. Remarkably, within hours of DON treatment mice showed blood–brain barrier integrity, reduced brain swelling, decreased function of activated effector CD8⁺ T cells in the brain, and levels of brain metabolites that resembled those in uninfected mice. These results suggest DON as a strong candidate for an effective adjunctive therapy for CM in African children.
NK Cell IL-10 Production Requires IL-15 and IL-10 Driven STAT3 Activation
Natural killer (NK) cells can produce IFNγ or IL-10 to regulate inflammation and immune responses but the factors driving NK cell IL-10 secretion are poorly-defined. Here, we identified NK cell-intrinsic STAT3 activation as vital for IL-10 production during both systemic (Lm) infection and following IL-15 cytokine/receptor complex (IL15C) treatment for experimental cerebral malaria (ECM). In both contexts, conditional deficiency in NK cells abrogated production of IL-10. Initial NK cell STAT3 phosphorylation was driven by IL-15. During Lm infection, this required capture or presentation of IL-15 by NK cell IL-15Rα. Persistent STAT3 activation was required to drive measurable IL-10 secretion and required NK cell expression of IL-10Rα. Survival-promoting effects of IL-15C treatment in ECM were dependent on NK cell while NK cell-intrinsic deficiency for , or abrogated NK cell IL-10 production and increased resistance against Lm. NK cell deficiency did not impact production of IFNγ, indicating the STAT3 activation initiated by IL-15 and amplified by IL-10 selectively drives the production of anti-inflammatory IL-10 by responding NK cells.
Phenotype and function of IL-10–producing NK cells in individuals with malaria experience
P.falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive NK cells correlated with reduced parasite load and protection from symptoms. We also found that murine NK cell production of IL-10 protected mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it is unknown what NK cell subsets produce IL-10 or if this is affected by malaria experience. We hypothesized that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we showed that NK cells from participants with malaria experience make significantly more IL-10 than participants with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce IFN-γ and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we found that coculture with primary monocytes, Plasmodium-infected RBCs, and antibody induced IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
Leveraging dirty mice that have microbial exposure to improve preclinical models of human immune status and disease
The National Institute of Allergy and Infectious Diseases (NIAID) hosted a two-day virtual workshop on leveraging microbial exposure to improve mouse models of human immune status and disease. The workshop’s objective was to evaluate the current state of knowledge in the field and to identify gaps, challenges and future directions.
The TCR's sensitivity to self peptide–MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens
Thymic selection produces a diverse T cell repertoire. Jameson and colleagues demonstrate intrinsic differences in the ability of naive CD8 + T cells to respond to foreign antigen, such that cells with higher self-reactivity dominate the immune response. The strength with which complexes of self peptide and major histocompatibility complex (MHC) proteins are recognized by the T cell antigen receptor (TCR) dictates the homeostasis of naive CD8 + T cells, but its effect on reactivity to foreign antigens is controversial. As expression of the negative regulator CD5 correlates with self-recognition, we studied CD5 lo and CD5 hi naive CD8 + T cells. Gene-expression characteristics suggested CD5 hi cells were better poised for reactivity and differentiation than were CD5 lo cells, and we found that the CD5 hi pool also exhibited more efficient clonal recruitment and expansion, as well as enhanced reactivity to inflammatory cues, during the recognition of foreign antigen. However, the recognition of complexes of foreign peptide and MHC was similar for both subsets. Thus, CD8 + T cells with higher self-reactivity dominate the immune response to foreign antigens, with implications for T cell repertoire diversity and autoimmunity.
The Nature of the Lymphopenic Environment Dictates Protective Function of Homeostatic-Memory CD8⁺ T Cells
A functional memory T cell pool is critical for resistance to pathogen reinfection. Lymphopenia produces memory-like CD8⁺ T cells through homeostatic proliferation, and such \"HP-memory\" cells can control lethal bacterial infections similarly to conventional, antigen-experienced, memory T cells. These 2 pathways for memory T cell generation are quite distinct. We show here, however, that similar factors are required for production of protective memory CD8 T cells via both homeostatic and conventional pathways. Induction of protective HP-memory CD8 T cells requires CD4⁺ T cell \"help,\" which we show is antigen nonspecific yet requires CD40L-CD40 interactions with host cells. The functional competence of HP-memory CD8 T cells also requires release of endogenous bacterial components (which follows irradiation-induced lymphopenia), potentially mimicking the role of adjuvants in conventional immune responses. Lymphopenic environments lacking these key factors support similar CD8 T cell homeostatic proliferation and the acquisition of memory phenotype, yet the HP-memory cells generated are defective in pathogen elimination. These findings suggest unexpected parallels in the requirements for generating protective memory CD8 T cells by distinct pathways, and they suggest ways to bolster immune competence during recovery from lymphopenia.