Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
90 result(s) for "Han, Hui-ju"
Sort by:
Novel Bartonella Species in Insectivorous Bats, Northern China
Bartonella species are emerging human pathogens. Bats are known to carry diverse Bartonella species, some of which are capable of infecting humans. However, as the second largest mammalian group by a number of species, the role of bats as the reservoirs of Bartonella species is not fully explored, in term of their species diversity and worldwide distribution. China, especially Northern China, harbors a number of endemic insectivorous bat species; however, to our knowledge, there are not yet studies about Bartonella in bats in China. The aim of the study was to investigate the prevalence and genetic diversity of Bartonella species in bats in Northern China. Bartonella species were detected by PCR amplification of gltA gene in 25.2% (27/107) bats in Mengyin County, Shandong Province of China, including 1/3 Rhinolophus ferrumequinum, 2/10 Rhinolophus pusillus, 9/16 Myotis fimbriatus, 1/5 Myotis ricketti, 14/58 Myotis pequinius. Phylogenetic analysis showed that Bartonella species detected in bats in this study clustered into ten groups, and some might be novel Bartonella species. An association between Bartonella species and bat species was demonstrated and co-infection with different Bartonella species in a single bat was also observed. Our findings expanded our knowledge on the genetic diversity of Bartonella in bats, and shed light on the ecology of bat-borne Bartonella species.
Genomic characterization of eight novel Bartonella species from bats and ectoparasites reveals phylogenetic diversity and host adaptation
Bats are recognized as hosts of diverse Bartonella species, and Bartonella are known agents of human disease. Here, we reported the isolation of 26 Bartonella strains belonging to eight distinct species from two bat species ( Myotis laniger and M. adversus ) and their ectoparasites (bat flies and bat mites) collected from Chongming County, Hubei Province, China. We obtained whole genome sequences of the bat-borne Bartonella spp. with second and third generation sequencing. The genome size of the bat-borne Bartonella spp. ranged from 1.39 to 1.98 Mb, with the GC content from 35.30%-38.92%. Phylogenetic analysis revealed that the bat-borne Bartonella spp. were divergent from currently known Bartonella spp., and the Average Nucleotide Identity (ANI) values were all below 95%, indicating that they were all novel species. Comparative genomic analysis underscored distinct characteristics of bat-borne Bartonella spp. in cell motility, replication, recombination, and the biogenesis of the cell wall/membrane/envelope, suggesting that bat-borne Bartonella spp. exhibited unique host adaptability. Notably, the virulence factor genes of two bat-borne Bartonella spp., strains B23 and 39, were highly analogous to those of the currently known Bartonella henselae and Bartonella quintana , indicating that they might be pathogenic to humans and animals. Altogether, our findings significantly broaden the diversity of the Bartonella genus, and provide new insights into the host specificity and evolutionary relationship of bat-borne Bartonella spp..
Natural Mediterranean Spotted Fever Foci, Qingdao, China
We sequenced DNA from spleens of rodents captured in rural areas of Qingdao, East China, during 2013-2015. We found 1 Apodemus agrarius mouse infected with Rickettsia conorii, indicating a natural Mediterranean spotted fever foci exists in East China and that the range of R. conorii could be expanding.
Severe fever with thrombocytopenia syndrome can masquerade as hemorrhagic fever with renal syndrome
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever with a high fatality rate and high frequency of person-to-person transmission and is caused by SFTSV, a tick-borne Phlebovirus. Because SFTS has similar clinical manifestations and epidemic characters (such as spatial and temporal distributions) with hemorrhagic fever with renal syndrome (HFRS) in China, we reason that SFTS patients might be misdiagnosed as HFRS. Acute-phase sera of 128 clinically diagnosed HFRS patients were retrospectively analyzed for Hantavirus IgM antibodies with ELISA. Hantavirus-negative patients' sera were further analyzed for SFTSV IgM antibodies with ELISA. ELISA showed that 73 of 128 (57.0%) of clinically diagnosed HFRS patients were IgM antibody positive to Hantaviruses. Among the 55 Hantavirus-IgM negative patients, four (7.3%) were IgM antibody positive to SFTSV. The results indicated that the four SFTS patients were misdiagnosed as HFRS. The misdiagnosed SFTS patients had clinical manifestations common to HFRS and were unable to be differentiated from HFRS clinically. Our study showed that SFTS patients could be clinically misdiagnosed as HFRS. The misdiagnosis of SFTS as HFRS causes particular concern because it may increase the risk of death of SFTS patients and person-to-person transmission of SFTSV without proper care for and isolation of SFTS patients.
Emergence of Zika virus infection in China
Currently, Zika virus (ZIKV) is spreading across the world and no ZIKV infection cases have ever been reported in China. Here, we aimed to determine whether ZIKV infection exists in China. Blood samples of 273 healthy individuals were collected from Nanning City, Guangxi Province, China in March 2019. We found that 9.5% (26/273) and 1.8% (5/273) of healthy persons were positive to ZIKV total antibody (IgG and/or IgM) IgM antibody, respectively. All ZIKV positive plasma samples were negative to Dengue virus and West Nile virus. Among the ZIKV antibody positive plasma samples, 65.4% (17/26) exhibited neutralizing activity to ZIKV. Followed up studies showed that none had clinical symptoms of ZIKV infection and oversea experience. Together, our study indicates that endemic ZIKV infections emerge in China, which not only suggested that ZIKV posed a potential threat to public health in China, but also expand the ZIKV epidemic areas in East and Southeast Asia.
Human-pathogenic relapsing fever Borrelia found in bats from Central China phylogenetically clustered together with relapsing fever borreliae reported in the New World
Bats can harbor zoonotic pathogens causing emerging infectious diseases, but their status as hosts for bacteria is limited. We aimed to investigate the distribution, prevalence and genetic diversity of Borrelia in bats and bat ticks in Hubei Province, China, which will give us a better understanding of the risk of Borrelia infection posed by bats and their ticks. During 2018–2020, 403 bats were captured from caves in Hubei Province, China, 2 bats were PCR-positive for Borrelia . Sequence analysis of rrs , flaB and glpQ genes of positive samples showed 99.55%-100% similarity to Candidatus Borrelia fainii, a novel human-pathogenic relapsing fever Borrelia species recently reported in Zambia, Africa and Eastern China, which was clustered together with relapsing fever Borrelia species traditionally reported only in the New World. Multilocus sequence typing (MLST) and pairwise genetic distances further confirmed the Borrelia species in the bats from Central China as Candidatus Borrelia fainii. No Borrelia DNA was detected in ticks collected from bats. The detection of this human-pathogenic relapsing fever Borrelia in bats suggests a wide distribution of this novel relapsing fever Borrelia species in China, which may pose a threat to public health in China.
SFTSV infection in rodents and their ectoparasitic chiggers
SFTSV, a tick-borne bunyavirus causing a severe hemorrhagic fever termed as severe fever with thrombocytopenia syndrome (SFTS). To evaluate the potential role of rodents and its ectoparasitic chiggers in the transmission of SFTSV, we collected wild rodents and chiggers on their bodies from a rural area in Qingdao City, Shandong Province, China in September 2020. PCR amplification of the M and L segments of SFTSV showed that 32.3% (10/31) of rodents and 0.2% (1/564) of chiggers ( Leptotrombidium deliense ) from the rodents were positive to SFTSV. Our results suggested that rodents and chiggers may play an important role in the transmission of SFTSV, although the efficiency of chiggers to transmit SFTSV needs to be further investigated experimentally.
Neutralizing Monoclonal Antibodies as Promising Therapeutics against Middle East Respiratory Syndrome Coronavirus Infection
Since emerging in 2012, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has been a global public health threat with a high fatality rate and worldwide distribution. There are no approved vaccines or therapies for MERS until now. Passive immunotherapy with neutralizing monoclonal antibodies (mAbs) is an effective prophylactic and therapeutic reagent against emerging viruses. In this article, we review current advances in neutralizing mAbs against MERS-CoV. The receptor-binding domain (RBD) in the spike protein of MERS-CoV is a major target, and mouse, camel, or human-derived neutralizing mAbs targeting RBD have been developed. A major problem with neutralizing mAb therapy is mutant escape under selective pressure, which can be solved by combination of neutralizing mAbs targeting different epitopes. Neutralizing mAbs are currently under preclinical evaluation, and they are promising candidate therapeutic agents against MERS-CoV infection.
Pathogenic New World Relapsing Fever Borrelia in a Myotis Bat, Eastern China, 2015
We identified Candidatus Borrelia fainii, a human pathogenic bacterium causing New World relapsing fever in a Myotis bat in eastern China. This finding expands knowledge about the geographic distribution of Borrelia spp. and the potential for infection with New World relapsing fever in China.
Babesia vesperuginis in insectivorous bats from China
Background To increase understanding of human bacterial and parasitic pathogens in bats, we investigated the prevalence of Babesia spp., Rickettsia spp., Anaplasma spp. and Coxiella burnetii in bats from China. Methods Bats were captured from Mengyin County, Shandong Province of China using nets. DNA was extracted from the blood and spleen of bats for molecular detection of Babesia spp., Rickettsia spp., Anaplasma spp. and Coxiella burnetii with specific primers for each species. Results A total of 146 spleen samples and 107 blood samples of insectivorous bats, which belonged to 6 species within two families, were collected from Mengyin County, Shandong Province of China. We found that two Eptesicus serotinus (2/15, 13.3%) were positive for Babesia vesperuginis . We were unable to detect genomic sequences for Rickettsia spp., Anaplasma spp. and Coxiella burnetii . Conclusions To our knowledge, our study showed for the first time the presence of Babesia vesperuginis in Eptesicus serotinus collected from China, suggesting that Babesia vesperuginis has a broad host species and geographical distribution.