Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
24,019
result(s) for
"Han, Jin"
Sort by:
Cybersecurity in the AI-Based Metaverse: A Survey
2022
The Metaverse is a multi-user virtual world that combines physical reality with digital virtual reality. The three basic technologies for building the Metaverse are immersive technologies, artificial intelligence, and blockchain. Companies are subsequently making significant investments into creating an artificially intelligent Metaverse, with the consequence that cybersecurity has become more crucial. As cybercrime increases exponentially, it is evident that a comprehensive study of Metaverse security based on artificial intelligence is lacking. A growing number of distributed denial-of-service attacks and theft of user identification information makes it necessary to conduct comprehensive and inclusive research in this field in order to identify the Metaverse’s vulnerabilities and weaknesses. This article provides a summary of existing research on AI-based Metaverse cybersecurity and discusses relevant security challenges. Based on the results, the issue of user identification plays a very important role in the presented works, for which biometric methods are the most commonly used. While the use of biometric data is considered the safest method, due to their uniqueness, they are also susceptible to misuse. A cyber-situation management system based on artificial intelligence should be able to analyze data of any volume with the help of algorithms. To prepare researchers who will pursue this topic in the future, this article provides a comprehensive summary of research on cybersecurity in the Metaverse based on artificial intelligence.
Journal Article
Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains
2020
Low-density lipoprotein receptor-related protein 6 (LRP6) is a coreceptor of the β-catenin-dependent Wnt signaling pathway. The LRP6 ectodomain binds Wnt proteins, as well as Wnt inhibitors such as sclerostin (SOST), which negatively regulates Wnt signaling in osteocytes. Although LRP6 ectodomain 1 (E1) is known to interact with SOST, several unresolved questions remain, such as the reason why SOST binds to LRP6 E1E2 with higher affinity than to the E1 domain alone. Here, we present the crystal structure of the LRP6 E1E2–SOST complex with two interaction sites in tandem. The unexpected additional binding site was identified between the C-terminus of SOST and the LRP6 E2 domain. This interaction was confirmed by in vitro binding and cell-based signaling assays. Its functional significance was further demonstrated in vivo using
Xenopus laevis
embryos. Our results provide insights into the inhibitory mechanism of SOST on Wnt signaling.
The low-density lipoprotein receptor-related protein 6 (LRP6) is a co-receptor of the β-catenin-dependent Wnt signaling pathway and interacts with the Wnt inhibitor sclerostin (SOST). Here the authors present the crystal structure of SOST in complex with the LRP6 E1E2 ectodomain construct, which reveals that the SOST C-terminus binds to the LRP6 E2 domain, and further validate this binding site with in vitro and in vivo experiments.
Journal Article
The senescence-associated secretory phenotype and its physiological and pathological implications
by
Wang, Boshi
,
Han, Jin
,
Demaria, Marco
in
Biological effects
,
Biological properties
,
Biomarkers
2024
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.The senescence-associated secretory phenotype (SASP) mediates the tissue effects of senescent cells. This Review discusses the composition, regulation and various biological implications of the SASP and its uses as a biomarker and a target of senomorphic drugs to treat cancer and other age-related conditions.
Journal Article
Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response
2018
Prefrontal brain areas are implicated in the control of fear behavior. However, how prefrontal circuits control fear response to innate threat is poorly understood. Here, we show that the anterior cingulate cortex (ACC) and its input to the basolateral nucleus of amygdala (BLA) contribute to innate fear response to a predator odor in mice. Optogenetic inactivation of the ACC enhances freezing response to fox urine without affecting conditioned freezing. Conversely, ACC stimulation robustly inhibits both innate and conditioned freezing. Circuit tracing and slice patch recordings demonstrate a monosynaptic glutamatergic connectivity of ACC-BLA but no or very sparse ACC input to the central amygdala. Finally, our optogenetic manipulations of the ACC-BLA projection suggest its inhibitory control of innate freezing response to predator odors. Together, our results reveal the role of the ACC and its projection to BLA in innate fear response to olfactory threat stimulus.
Brain circuits that control innate fear response are essential for an animal’s survival. Here, the authors report how the anterior cingulate cortex and its projection to amygdala control the innate fear response in mice.
Journal Article
CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17
by
Yun, Jing-Ping
,
Duan, Jin-Ling
,
Xie, Dan
in
Animals
,
Apoptosis
,
ATP-Dependent Proteases - genetics
2020
Background
Metastasis causes the vast majority of colorectal carcinoma (CRC)-related deaths. However, little is known about the specific traits and underlying mechanisms of metastasis-initiating cells in primary CRC. And whether or not circular RNAs (circRNAs) take part in this particular event remain not adequately stated yet.
Methods
A screening method based on Transwell assay was first applied to build CRC subgroups with different metastatic potential. High throughput RNA sequencing was used to find out novel metastatic drivers in CRC metastasis-initiating step. A series of in vitro and in vivo assays were further applied to elucidate the functions and underlying molecular mechanisms of circRNAs in CRC metastasis.
Results
A circRNA consisting of exon 8–11 of LONP2, termed as circLONP2, was upregulated in metastasis-initiating CRC subgroups. Aberrant higher expression of circLONP2 was observed in primary CRC tissues with established metastasis, and along the invasive margin in metastatic site. High expression of circLONP2 predicted unfavorable overall survival. Functional studies revealed that circLONP2 could enhance the invasiveness of CRC cells in vitro, and targeting circLONP2 through anti-sense oligonucleotide (ASO) dramatically reduced the penetrance of metastasis to foreign organs in vivo
.
Mechanically, circLONP2 directly interacted with and promoted the processing of primary microRNA-17 (pri-miR-17), through recruiting DiGeorge syndrome critical region gene 8 (DGCR8) and Drosha complex in DDX1-dependent manner. Meanwhile, upregulated mature miR-17-5p could be assembled into exosomes and internalized by neighboring cells to enhance their aggressiveness.
Conclusions
Our data indicate that circLONP2 acts as key metastasis-initiating molecule during CRC progression through modulating the intracellular maturation and intercellular transfer of miR-17, resulting in dissemination of metastasis-initiating ability in primary site and acceleration of metastasis formation in foreign organs. circLONP2 could serve as an effective prognostic predictor and/or novel anti-metastasis therapeutic target in CRC treatment.
Journal Article
Downscale transfer of quasigeostrophic energy catalyzed by near-inertial waves
2020
Wind forcing injects energy into mesoscale eddies and near-inertial waves (NIWs) in the ocean, and the NIWs are believed to solve the puzzle of mesoscale energy budget by absorbing energy from mesoscale eddies. This work studies the turbulent energy transfer in the NIW–quasigeostrophic mean mesoscale eddy coupled system based on a previously derived two-dimensional model which inherits conserved quantities in Boussinesq equations (Xie & Vanneste, J. Fluid Mech., vol. 774, 2015, pp. 147–169). The conservation of energy, potential enstrophy and wave action implies the existence of phase transition with a change of the relative strength between NIW and mean-flow, quantified by a parameter $R$. By running forced-dissipative numerical simulations, we justify the existence of second-order phase transition around a critical value $R_c$. When $0R_c$, energy transfers downscale, wave action transfers bidirectionally and vortex filaments are dominant. We find the catalytic wave induction mechanism where the NIW induces a downscale energy flux of the mean flow, which differs from the stimulated loss of balance mechanism observed in inertial value problems. In the parameter regime $0
Journal Article
Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions
2019
Background
This study investigated the clinical value of interleukin-6 (IL-6), pentraxin 3 (PTX3), and procalcitonin (PCT) in patients with sepsis and septic shock diagnosed according to the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).
Methods
Serum levels of IL-6, PTX3, and PCT were measured in 142 enrolled subjects (51 with sepsis, 46 with septic shock, and 45 as controls). Follow-up IL-6 and PTX3 levels were measured in patients with initial septic shock within 24 h of hospital discharge. Optimal cut-off values were determined for sepsis and septic shock, and prognostic values were evaluated.
Results
Serum IL-6 levels could discriminate sepsis (area under the curve [AUC], 0.83–0.94,
P
< 0.001; cut-off value, 52.60 pg/mL, 80.4% sensitivity, 88.9% specificity) from controls and could distinguish septic shock (AUC, 0.71–0.89; cut-off value, 348.92 pg/mL, 76.1% sensitivity, 78.4% specificity) from sepsis. Twenty-eight-day mortality was significantly higher in the group with high IL-6 (≥ 348.92 pg/mL) than in the group with low IL-6 (< 348.92 pg/mL) (
P
= 0.008). IL-6 was an independent risk factor for 28-day mortality among overall patients (hazard ratio, 1.0004; 95% confidence interval, 1.0003–1.0005;
p
= 0.024). In septic shock patients, both the initial and follow-up PTX3 levels were consistently significantly higher in patients who died than in those who recovered (initial
p
= 0.004; follow-up
P
< 0.001).
Conclusions
The diagnostic and prognostic value of IL-6 was superior to those of PTX3 and PCT for sepsis and septic shock.
Journal Article
Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2
by
An, Yeochan
,
Kang, Yoon-Gu
,
Kajimoto, Ryoichi
in
639/301/119/997
,
639/766/119/997
,
Antiferromagnetism
2023
The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-
Q
chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co
1/3
TaS
2
as the first example of tetrahedral triple-
Q
magnetic ordering with the associated topological Hall effect (non-zero
σ
xy
(
H
= 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-
Q
state.
Skyrmion crystals, where skyrmions are arranged close packed in a triangular lattice arise due to the superposition of three magnetic spin spirals, each with a distinct wave vector, Q. Such skrymion crystals have been found in a diverse array of materials. Here, Park et al find a short wavelength (or dense skyrmion) limit of this skyrmion crystal structure in Co1/3TaS2, a metallic triangular lattice antiferromagnet, in the form of a triple Q magnetic ordering, with four magnetic sublattices.’
Journal Article
Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy
by
Park, Jimin
,
Cha, Pil-Ryung
,
Han, Hyung-Seop
in
Absorbable Implants
,
Alloys
,
Alloys - pharmacology
2016
There has been a tremendous amount of research in the past decade to optimize the mechanical properties and degradation behavior of the biodegradable Mg alloy for orthopedic implant. Despite the feasibility of degrading implant, the lack of fundamental understanding about biocompatibility and underlying bone formation mechanism is currently limiting the use in clinical applications. Herein, we report the result of long-term clinical study and systematic investigation of bone formation mechanism of the biodegradable Mg-5wt%Ca-1wt%Zn alloy implant through simultaneous observation of changes in element composition and crystallinity within degrading interface at hierarchical levels. Controlled degradation of Mg-5wt%Ca-1wt%Zn alloy results in the formation of biomimicking calcification matrix at the degrading interface to initiate the bone formation process. This process facilitates early bone healing and allows the complete replacement of biodegradable Mg implant by the new bone within 1 y of implantation, as demonstrated in 53 cases of successful long-term clinical study.
Journal Article
Highly compressible 3D periodic graphene aerogel microlattices
by
Han, T. Yong-Jin
,
Duoss, Eric B.
,
Golobic, Alexandra M.
in
140/133
,
639/301/357/918
,
639/301/923/1027
2015
Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.
Aerogels are ultra-lightweight porous materials that possess some remarkable properties. Here, the authors use a 3D printing technique to fabricate just such a material out of graphene, exhibiting large surface area, high conductivity and supercompressibility while maintaining good structural integrity.
Journal Article
This website uses cookies to ensure you get the best experience on our website.