Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
166
result(s) for
"Han, Laura K. M."
Sort by:
A methylation study of long-term depression risk
by
Hattab, Mohammad W
,
Aberg, Karolina A
,
Milaneschi Yuri
in
Autoimmune diseases
,
Blood
,
Cell adhesion & migration
2020
Recurrent and chronic major depressive disorder (MDD) accounts for a substantial part of the disease burden because this course is most prevalent and typically requires long-term treatment. We associated blood DNA methylation profiles from 581 MDD patients at baseline with MDD status 6 years later. A resampling approach showed a highly significant association between methylation profiles in blood at baseline and future disease status (P = 2.0 × 10−16). Top MWAS results were enriched specific pathways, overlapped with genes found in GWAS of MDD disease status, autoimmune disease and inflammation, and co-localized with eQTLS and (genic enhancers of) of transcription sites in brain and blood. Many of these findings remained significant after correction for multiple testing. The major themes emerging were cellular responses to stress and signaling mechanisms linked to immune cell migration and inflammation. This suggests that an immune signature of treatment-resistant depression is already present at baseline. We also created a methylation risk score (MRS) to predict MDD status 6 years later. The AUC of our MRS was 0.724 and higher than risk scores created using a set of five putative MDD biomarkers, genome-wide SNP data, and 27 clinical, demographic and lifestyle variables. Although further studies are needed to examine the generalizability to different patient populations, these results suggest that methylation profiles in blood may present a promising avenue to support clinical decision making by providing empirical information about the likelihood MDD is chronic or will recur in the future.
Journal Article
Methylome-wide association findings for major depressive disorder overlap in blood and brain and replicate in independent brain samples
by
Aberg, Karolina A
,
Gerard, van Grootheest
,
Milaneschi Yuri
in
Blood
,
Brodmann's area
,
Chromatin
2020
We present the first large-scale methylome-wide association studies (MWAS) for major depressive disorder (MDD) to identify sites of potential importance for MDD etiology. Using a sequencing-based approach that provides near-complete coverage of all 28 million common CpGs in the human genome, we assay methylation in MDD cases and controls from both blood (N = 1132) and postmortem brain tissues (N = 61 samples from Brodmann Area 10, BA10). The MWAS for blood identified several loci with P ranging from 1.91 × 10−8 to 4.39 × 10−8 and a resampling approach showed that the cumulative association was significant (P = 4.03 × 10−10) with the signal coming from the top 25,000 MWAS markers. Furthermore, a permutation-based analysis showed significant overlap (P = 5.4 × 10−3) between the MWAS findings in blood and brain (BA10). This overlap was significantly enriched for a number of features including being in eQTLs in blood and the frontal cortex, CpG islands and shores, and exons. The overlapping sites were also enriched for active chromatin states in brain including genic enhancers and active transcription start sites. Furthermore, three loci located in GABBR2, RUFY3, and in an intergenic region on chromosome 2 replicated with the same direction of effect in the second brain tissue (BA25, N = 60) from the same individuals and in two independent brain collections (BA10, N = 81 and 64). GABBR2 inhibits neuronal activity through G protein-coupled second-messenger systems and RUFY3 is implicated in the establishment of neuronal polarity and axon elongation. In conclusion, we identified and replicated methylated loci associated with MDD that are involved in biological functions of likely importance to MDD etiology.
Journal Article
Contributing factors to advanced brain aging in depression and anxiety disorders
2021
Depression and anxiety are common and often comorbid mental health disorders that represent risk factors for aging-related conditions. Brain aging has shown to be more advanced in patients with major depressive disorder (MDD). Here, we extend prior work by investigating multivariate brain aging in patients with MDD, anxiety disorders, or both, and examine which factors contribute to older-appearing brains. Adults aged 18–57 years from the Netherlands Study of Depression and Anxiety underwent structural MRI. A pretrained brain-age prediction model based on >2000 samples from the ENIGMA consortium was applied to obtain brain-predicted age differences (brain PAD, predicted brain age minus chronological age) in 65 controls and 220 patients with current MDD and/or anxiety. Brain-PAD estimates were associated with clinical, somatic, lifestyle, and biological factors. After correcting for antidepressant use, brain PAD was significantly higher in MDD (+2.78 years, Cohen’s d = 0.25, 95% CI −0.10-0.60) and anxiety patients (+2.91 years, Cohen’s d = 0.27, 95% CI −0.08-0.61), compared with controls. There were no significant associations with lifestyle or biological stress systems. A multivariable model indicated unique contributions of higher severity of somatic depression symptoms (b = 4.21 years per unit increase on average sum score) and antidepressant use (−2.53 years) to brain PAD. Advanced brain aging in patients with MDD and anxiety was most strongly associated with somatic depressive symptomatology. We also present clinically relevant evidence for a potential neuroprotective antidepressant effect on the brain-PAD metric that requires follow-up in future research.
Journal Article
The impact of depression and anxiety treatment on biological aging and metabolic stress: study protocol of the Mood treatment with antidepressants or running (MOTAR) study
by
Verhoeven, Josine E.
,
Batelaan, Neeltje M.
,
van Balkom, Anton J. L. M.
in
Aging
,
Antidepressant
,
Antidepressants
2019
Background
Depressive and anxiety disorders have shown to be associated to premature or advanced biological aging and consequently to adversely impact somatic health. Treatments with antidepressant medication or running therapy are both found to be effective for many but not all patients with mood and anxiety disorders. These interventions may, however, work through different pathophysiological mechanisms and could differ in their impact on biological aging and somatic health. This study protocol describes the design of an unique intervention study that examines whether both treatments are similarly effective in reducing or reversing biological aging (primary outcome), psychiatric status, metabolic stress and neurobiological indicators (secondary outcomes).
Methods
The MOod Treatment with Antidepressants or Running (MOTAR) study will recruit a total of 160 patients with a current major depressive and/or anxiety disorder in a mental health care setting. Patients will receive a 16-week treatment with either antidepressant medication or running therapy (3 times/week). Patients will undergo the treatment of their preference and a subsample will be randomized (1:1) to overcome preference bias. An additional no-disease-no-treatment group of 60 healthy controls without lifetime psychopathology, will be included as comparison group for primary and secondary outcomes at baseline. Assessments are done at week 0 for patients and controls, and at week 16 and week 52 for patients only, including written questionnaires, a psychiatric and medical examination, blood, urine and saliva collection and a cycle ergometer test, to gather information about biological aging (telomere length and telomerase activity), mental health (depression and anxiety disorder characteristics), general fitness, metabolic stress-related biomarkers (inflammation, metabolic syndrome, cortisol) and genetic determinants. In addition, neurobiological alterations in brain processes will be assessed using structural and functional Magnetic Resonance Imaging (MRI) in a subsample of at least 25 patients per treatment arm and in all controls.
Discussion
This intervention study aims to provide a better understanding of the impact of antidepressant medication and running therapy on biological aging, metabolic stress and neurobiological indicators in patients with depressive and anxiety disorders in order to guide a more personalized medicine treatment.
Trial registration
Trialregister.nl Number of identification:
NTR3460
, May 2012.
Journal Article
eLife’s new model and its impact on science communication
by
Mittal, Divyansh
,
Mencia, Regina
,
Fernández-Chiappe, Florencia
in
Analysis
,
Careers
,
Communication
2022
The eLife Early-Career Advisory Group discusses eLife’s new peer review and publishing model, and how the whole process of scientific communication could be improved for the benefit of early-career researchers and the entire scientific community.
Journal Article
Predicting Antidepressant Treatment Response From Cortical Structure on MRI: A Mega‐Analysis From the ENIGMA‐MDD Working Group
by
Ichikawa, Naho
,
Ching, Christopher R. K.
,
Pozzi, Elena
in
Accuracy
,
Adult
,
antidepressant treatment response
2025
Accurately predicting individual antidepressant treatment response could expedite the lengthy trial‐and‐error process of finding an effective treatment for major depressive disorder (MDD). We tested and compared machine learning‐based methods that predict individual‐level pharmacotherapeutic treatment response using cortical morphometry from multisite longitudinal cohorts. We conducted an international analysis of pooled data from six sites of the ENIGMA‐MDD consortium (n = 262 MDD patients; age = 36.5 ± 15.3 years; 154 (59%) female; mean response rate = 57%). Treatment response was defined as a ≥ 50% reduction in symptom severity score after 4–12 weeks post‐initiation of antidepressant treatment. Structural MRI was acquired before, or < 14 days after, treatment initiation. The cortex was parcellated using FreeSurfer, from which cortical thickness and surface area were measured. We tested several machine learning pipeline configurations, which varied in (i) the way we presented the cortical data (i.e., average values per region of interest, as a vector containing voxel‐wise cortical thickness and surface area measures, and as cortical thickness and surface area projections), (ii) whether we included clinical data, and the (iii) machine learning model (i.e., gradient boosting, support vector machine, and neural network classifiers) and (iv) cross‐validation methods (i.e., k‐fold and leave‐one‐site‐out) we used. First, we tested if the overall predictive performance of the pipelines was better than chance, with a corrected 10‐fold cross‐validation permutation test. Second, we compared if some machine learning pipeline configurations outperformed others. In an exploratory analysis, we repeated our first analysis in three subpopulations, namely patients (i) from a single site, (ii) with comparable response rates, and (iii) showing the least (first quartile) and the most (fourth quartile) treatment response, which we call the extreme (non‐)responders subpopulation. Finally, we explored the effect of including subcortical volumetric data on model performance. Overall, performance predicting antidepressant treatment response was not significantly better than chance (balanced accuracy = 50.5%; p = 0.66) and did not vary with alternative pipeline configurations. Exploratory analyses revealed that performance across models was only significantly better than chance in the extreme (non‐)responders subpopulation (balanced accuracy = 63.9%, p = 0.001). Including subcortical data did not alter the observed model performance. Cortical structural MRI alone could not reliably predict individual pharmacotherapeutic treatment response in MDD. None of the used machine learning pipeline configurations outperformed the others. In exploratory analyses, we found that predicting response in the extreme (non‐)responders subpopulation was feasible on both cortical data alone and combined with subcortical data, which suggests that specific MDD subpopulations may exhibit response‐related patterns in structural data. Future work may use multimodal data to predict treatment response in MDD. In this mega‐analysis of cortical structural MRI in 262 individuals with major depression disorder (MDD), pooled from six sites of the ENIGMA‐MDD consortium, we tested various machine‐learning pipeline configurations. We provide compelling evidence that cortical structural MRI alone is not a reliable predictor of individualized pharmacotherapeutic treatment response in MDD.
Journal Article
An integrative study of five biological clocks in somatic and mental health
by
Aberg, Karolina A
,
Milaneschi, Yuri
,
Han, Laura KM
in
Aging
,
biological aging
,
Biological clocks
2021
Biological clocks have been developed at different molecular levels and were found to be more advanced in the presence of somatic illness and mental disorders. However, it is unclear whether different biological clocks reflect similar aging processes and determinants. In ~3000 subjects, we examined whether five biological clocks (telomere length, epigenetic, transcriptomic, proteomic, and metabolomic clocks) were interrelated and associated to somatic and mental health determinants. Correlations between biological aging indicators were small (all r < 0.2), indicating little overlap. The most consistent associations of advanced biological aging were found for male sex, higher body mass index (BMI), metabolic syndrome, smoking, and depression. As compared to the individual clocks, a composite index of all five clocks showed most pronounced associations with health determinants. The large effect sizes of the composite index and the low correlation between biological aging indicators suggest that one’s biological age is best reflected by combining aging measures from multiple cellular levels.
Journal Article
FreeSurfer‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts
by
Leenings, Ramona
,
Flint, Claas
,
Augustinack, Jean C.
in
Abnormalities
,
Affective disorders
,
Aging
2022
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi‐)genetics. Finally, we highlight points where FreeSurfer‐based hippocampal subfield studies may be optimized. Hippocampal subfield analysis is increasingly performed with the availability of automated magnetic resonance imaging segmentation methods. We give a synopsis of the FreeSurfer hippocampal subfield segmentation algorithm, measurement reliability studies and application domains. We discuss how global size and age effects can be modeled and suggest a standardized hippocampal subfield segmentation quality control procedure for improved pipeline harmonization.
Journal Article
Correcting for cell-type effects in DNA methylation studies: reference-based method outperforms latent variable approaches in empirical studies
by
Kumar, Gaurav
,
Han, Laura K. M.
,
Zhao, Min
in
Animal Genetics and Genomics
,
Bioinformatics
,
Biomedical and Life Sciences
2017
Based on an extensive simulation study, McGregor and colleagues recently recommended the use of surrogate variable analysis (SVA) to control for the confounding effects of cell-type heterogeneity in DNA methylation association studies in scenarios where no cell-type proportions are available. As their recommendation was mainly based on simulated data, we sought to replicate findings in two large-scale empirical studies. In our empirical data, SVA did not fully correct for cell-type effects, its performance was somewhat unstable, and it carried a risk of missing true signals caused by removing variation that might be linked to actual disease processes. By contrast, a reference-based correction method performed well and did not show these limitations. A disadvantage of this approach is that if reference methylomes are not (publicly) available, they will need to be generated once for a small set of samples. However, given the notable risk we observed for cell-type confounding, we argue that, to avoid introducing false-positive findings into the literature, it could be well worth making this investment.
Please see related Correspondence article:
https://genomebiology.biomedcentral.com/articles/10/1186/s13059-017-1149-7
and related Research article:
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0935-y
Journal Article
Mind the gap: Performance metric evaluation in brain‐age prediction
by
Lange, Ann‐Marie G.
,
Rokicki, Jaroslav
,
Han, Laura K. M.
in
Accuracy
,
Age factors
,
Algorithms
2022
Estimating age based on neuroimaging‐derived data has become a popular approach to developing markers for brain integrity and health. While a variety of machine‐learning algorithms can provide accurate predictions of age based on brain characteristics, there is significant variation in model accuracy reported across studies. We predicted age in two population‐based datasets, and assessed the effects of age range, sample size and age‐bias correction on the model performance metrics Pearson's correlation coefficient (r), the coefficient of determination (R2), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The results showed that these metrics vary considerably depending on cohort age range; r and R2 values are lower when measured in samples with a narrower age range. RMSE and MAE are also lower in samples with a narrower age range due to smaller errors/brain age delta values when predictions are closer to the mean age of the group. Across subsets with different age ranges, performance metrics improve with increasing sample size. Performance metrics further vary depending on prediction variance as well as mean age difference between training and test sets, and age‐bias corrected metrics indicate high accuracy—also for models showing poor initial performance. In conclusion, performance metrics used for evaluating age prediction models depend on cohort and study‐specific data characteristics, and cannot be directly compared across different studies. Since age‐bias corrected metrics generally indicate high accuracy, even for poorly performing models, inspection of uncorrected model results provides important information about underlying model attributes such as prediction variance. While a variety of machine‐learning algorithms can provide accurate predictions of age based on brain characteristics, there is significant variation in model accuracy reported across studies. We predicted age based on neuroimaging data in two population‐based datasets, and assessed the effects of age range, sample size, and age‐bias correction on the model performance metrics r, R2, Root Mean Squared Error, and Mean Absolute Error. The results showed that these metrics depend on cohort and study‐specific data characteristics including age range and sample size, and cannot be directly compared across different studies. Age‐bias corrected metrics indicate high accuracy, even for poorly performing models, and inspection of uncorrected model results thus provides important information about underlying model attributes such as prediction variance.
Journal Article