Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
12,409
result(s) for
"Han, Ying"
Sort by:
Dynamical downscaling of regional climate: A review of methods and limitations
2019
The traditional dynamical downscaling (TDD) method employs continuous integration of regional climate models (RCM) with the general circulation model (GCM) providing the initial and lateral boundary conditions. Dynamical downscaling simulations are constrained by physical principles and can generate a full set of climate information, providing one of the important approaches to projecting fine spatial-scale future climate information. However, the systematic biases of climate models often degrade the TDD simulations and hinder the application of dynamical downscaling in the climate-change related studies. New methods developed over past decades improve the performance of dynamical downscaling simulations. These methods can be divided into four groups: the TDD method, the pseudo global warming method, dynamical downscaling with GCM bias corrections, and dynamical downscaling with both GCM and RCM bias corrections. These dynamical downscaling methods are reviewed and compared in this paper. The merits and limitations of each dynamical downscaling method are also discussed. In addition, the challenges and potential directions in progressing dynamical downscaling methods are stated.
Journal Article
Low‐Dimensional Metal Halide Perovskite Crystal Materials: Structure Strategies and Luminescence Applications
2021
Replacing methylammonium (MA+), formamidine (FA+), and/or cesium (Cs+) in 3D metal halide perovskites by larger organic cations have built a series of low‐dimensional metal halide perovskites (LDMHPs) in which the inorganic metal halide octahedra arranging in the forms of 2D layers, 1D chains, and 0D points. These LDMHPs exhibit significantly different optoelectronic properties from 3D metal halide perovskites (MHPs) due to their unique quantum confinement effects and large exciton binding energies. In particular, LDMHPs often have excellent broadband luminescence from self‐trapped excitons. Chemical composition, hydrogen bonding, and external factors (temperature and pressure etc.) determine structures and influence photoelectric properties of LDMHPs greatly, and especially it seems that there is no definite regulation to predict the structure and photoelectric properties when a random cation, metal, and halide is chosen to design a LDMHP. Therefore, this review discusses the construction strategies of the recent reported LDMHPs and their application progress in the luminescence field for a better understanding of these factors and a prospect for LDMHPs’ development in the future. Chemical composition, hydrogen bonding, and external factors (temperature and pressure) determine the structures and photoelectric properties of low‐dimensional metal halide perovskites (LDMHPs). This review discusses the construction strategies of the recent LDMHPs and their applications in the luminescence field for a better understanding of these factors and a prospect for LDMHPs’ development in the future.
Journal Article
Elastic straining of free-standing monolayer graphene
by
Feng, Shizhe
,
Han, Ying
,
Hue Ly, Thuc
in
639/301/357/1018
,
639/301/357/537
,
639/301/357/918/1053
2020
The sp
2
nature of graphene endows the hexagonal lattice with very high theoretical stiffness, strength and resilience, all well-documented. However, the ultimate stretchability of graphene has not yet been demonstrated due to the difficulties in experimental design. Here, directly performing in situ tensile tests in a scanning electron microscope after developing a protocol for sample transfer, shaping and straining, we report the elastic properties and stretchability of free-standing single-crystalline monolayer graphene grown by chemical vapor deposition. The measured Young’s modulus is close to 1 TPa, aligning well with the theoretical value, while the representative engineering tensile strength reaches ~50-60 GPa with sample-wide elastic strain up to ~6%. Our findings demonstrate that single-crystalline monolayer graphene can indeed display near ideal mechanical performance, even in a large area with edge defects, as well as resilience and mechanical robustness that allows for flexible electronics and mechatronics applications.
The extraordinary mechanical properties of graphene are usually measured on very small or supported samples. Here, the authors develop a method to test a large area of graphene and show that even with edge defects it displays near-ideal mechanical performance.
Journal Article
Patient-derived xenograft models in cancer therapy: technologies and applications
2023
Patient-derived xenograft (PDX) models, in which tumor tissues from patients are implanted into immunocompromised or humanized mice, have shown superiority in recapitulating the characteristics of cancer, such as the spatial structure of cancer and the intratumor heterogeneity of cancer. Moreover, PDX models retain the genomic features of patients across different stages, subtypes, and diversified treatment backgrounds. Optimized PDX engraftment procedures and modern technologies such as multi-omics and deep learning have enabled a more comprehensive depiction of the PDX molecular landscape and boosted the utilization of PDX models. These irreplaceable advantages make PDX models an ideal choice in cancer treatment studies, such as preclinical trials of novel drugs, validating novel drug combinations, screening drug-sensitive patients, and exploring drug resistance mechanisms. In this review, we gave an overview of the history of PDX models and the process of PDX model establishment. Subsequently, the review presents the strengths and weaknesses of PDX models and highlights the integration of novel technologies in PDX model research. Finally, we delineated the broad application of PDX models in chemotherapy, targeted therapy, immunotherapy, and other novel therapies.
Journal Article
Supramolecular tessellations by the exo-wall interactions of pagoda4arene
2021
Supramolecular tessellation has gained increasing interest in supramolecular chemistry for its structural aesthetics and potential applications in optics, magnetics and catalysis. In this work, a new kind of supramolecular tessellations (STs) have been fabricated by the exo-wall interactions of pagoda[4]arene (P4). ST with rhombic tiling pattern was first constructed by P4 itself through favorable π···π interactions between anthracene units of adjacent P4. Notably, various highly ordered STs with different tiling patterns have been fabricated based on exo-wall charge transfer interactions between electron-rich P4 and electron-deficient guests including 1,4-dinitrobenzene, terephthalonitrile and tetrafluoroterephthalonitrile. Interestingly, solvent modulation and guest selection played a crucial role in controlling the molecular arrangements in the co-crystal superstructures. This work not only proves that P4 is an excellent macrocyclic building block for the fabrication of various STs, but also provides a new perspective and opportunity for the design and construction of supramolecular two-dimensional organic materials.
Supramolecular tessellation has gained increasing interest in supramolecular chemistry for its structural aesthetics and potential applications in optics, magnetics and catalysis. Here, the authors expand the examples of molecular building blocks for supramolecular tessellation and fabricate supramolecular tessellations using the exo-wall interactions of pagoda[4]arene.
Journal Article
Regulation of anoikis by extrinsic death receptor pathways
2023
Metastatic cancer cells can develop anoikis resistance in the absence of substrate attachment and survive to fight tumors. Anoikis is mediated by endogenous mitochondria-dependent and exogenous death receptor pathways, and studies have shown that caspase-8-dependent external pathways appear to be more important than the activity of the intrinsic pathways. This paper reviews the regulation of anoikis by external pathways mediated by death receptors. Different death receptors bind to different ligands to activate downstream caspases. The possible mechanisms of Fas-associated death domain (FADD) recruitment by Fas and TNF receptor 1 associated-death domain (TRADD) recruitment by tumor necrosis factor receptor 1 (TNFR1), and DR4- and DR5-associated FADD to induce downstream caspase activation and regulate anoikis were reviewed. This review highlights the possible mechanism of the death receptor pathway mediation of anoikis and provides new insights and research directions for studying tumor metastasis mechanisms.
9w_3dtXFY6CUXRSJ-7gGif
Video Abstract
Journal Article
GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein
2021
Lack of detailed knowledge of SARS-CoV-2 infection has been hampering the development of treatments for coronavirus disease 2019 (COVID-19). Here, we report that RNA triggers the liquid–liquid phase separation (LLPS) of the SARS-CoV-2 nucleocapsid protein, N. By analyzing all 29 proteins of SARS-CoV-2, we find that only N is predicted as an LLPS protein. We further confirm the LLPS of N during SARS-CoV-2 infection. Among the 100,849 genome variants of SARS-CoV-2 in the
GISAID
database, we identify that ~37% (36,941) of the genomes contain a specific trio-nucleotide polymorphism (GGG-to-AAC) in the coding sequence of N, which leads to the amino acid substitutions, R203K/G204R. Interestingly, N
R203K/G204R
exhibits a higher propensity to undergo LLPS and a greater effect on
IFN
inhibition. By screening the chemicals known to interfere with N-RNA binding in other viruses, we find that (-)-gallocatechin gallate (GCG), a polyphenol from green tea, disrupts the LLPS of N and inhibits SARS-CoV-2 replication. Thus, our study reveals that targeting N-RNA condensation with GCG could be a potential treatment for COVID-19.
Coronavirus nucleocapsid (N) protein is important for viral genome packaging and virion assembly. Here the authors show that natural chemical (-)-gallocatechin gallate (GCG) disrupts the liquid–liquid phase separation of N and inhibits SARS-CoV-2 replication.
Journal Article
Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis
2024
Precisely modulating the Ru-O covalency in RuO
x
for enhanced stability in proton exchange membrane water electrolysis is highly desired. However, transition metals with
d
-valence electrons, which were doped into or alloyed with RuO
x
, are inherently susceptible to the influence of coordination environment, making it challenging to modulate the Ru-O covalency in a precise and continuous manner. Here, we first deduce that the introduction of lanthanide with gradually changing electronic configurations can continuously modulate the Ru-O covalency owing to the shielding effect of 5
s
/5
p
orbitals. Theoretical calculations confirm that the durability of Ln-RuO
x
following a volcanic trend as a function of Ru-O covalency. Among various Ln-RuO
x
, Er-RuO
x
is identified as the optimal catalyst and possesses a stability 35.5 times higher than that of RuO
2
. Particularly, the Er-RuO
x
-based device requires only 1.837 V to reach 3 A cm
−2
and shows a long-term stability at 500 mA cm
−2
for 100 h with a degradation rate of mere 37 μV h
−1
.
Lack of stability in RuO
2
-based catalysts at industrial currents impedes their use in green hydrogen production. Here, the authors show that incorporating lanthanide elements into RuO
x
shields against external factors, enabling fine-tuned Ru-O covalency for durable oxygen evolution reaction electrocatalysis.
Journal Article