Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Han, Zeen"
Sort by:
A Novel DTSCR Structure with High Holding Voltage and Enhanced Current Discharge Capability for 28 nm CMOS Technology ESD Protection
by
Ma, Boyang
,
Wang, Shulong
,
Chen, Shupeng
in
CMOS
,
Complementary metal oxide semiconductors
,
current discharge
2023
To cope with the much narrower ESD design window in 28 nm CMOS technology, a novel diode-triggered silicon-controlled rectifier with an extra discharge path (EDP-DTSCR) for ESD protection is proposed in this paper. Compared with the traditional DTSCR, the proposed DTSCR has an enhanced current discharge capability that is achieved by creating a slave SCR path in parallel with the master SCR path. Moreover, the improved triggering and holding characteristic can be obtained by the proposed EDP-DTSCR. By sharing the anode emitter junction, a slave SCR path is constructed that is symmetrical to the position of the master SCR path to add an additional ESD discharge path to the EDP-DTSCR. In this way, the current discharge capability of the entire device is obviously improved. The TCAD simulation result shows that the proposed device has a remarkably lower on-resistance compared with the traditional DTSCR and the DTSCR with p-type guard ring (PGR-DTSCR). In addition, it is structurally optimized to further increase the holding voltage and reduce the trigger voltage to improve the anti-latching capability of the device, which is more conducive to the ESD protection window application of 28 nm CMOS technology.
Journal Article
A False Trigger-Strengthened and Area-Saving Power-Rail Clamp Circuit with High ESD Performance
2023
A power clamp circuit, which has good immunity to false trigger under fast power-on conditions with a 20 ns rising edge, is proposed in this paper. The proposed circuit has a separate detection component and an on-time control component which enable it to distinguish between electrostatic discharge (ESD) events and fast power-on events. As opposed to other on-time control techniques, instead of large resistors or capacitors, which can cause a large occupation of the layout area, we use a capacitive voltage-biased p-channel MOSFET in the on-time control part of the proposed circuit. The capacitive voltage-biased p-channel MOSFET is in the saturation region after the ESD event is detected, which can serve as a large equivalent resistance (~106 Ω) in the structure. The proposed power clamp circuit offers several advantages compared to the traditional circuit, such as having at least 70% area savings in the trigger circuit area (30% area savings in the whole circuit area), supporting a power supply ramp time as fast as 20 ns, dissipating the ESD energy more cleanly with little residual charge, and recovering faster from false triggers. The rail clamp circuit also offers robust performance in an industry-standard PVT (process, voltage, and temperature) space and has been verified by the simulation results. Showing good performance of human body model (HBM) endurance and high immunity to false trigger, the proposed power clamp circuit has great potential for application in ESD protection.
Journal Article
Shifts in diurnal cycles of low and high clouds warm the climate: evidence from decadal satellite observations
2025
Anticipated changes in the diurnal cloud cycle (DCC) under global warming carry significant implications for future climate predictions. However, there is a notable dearth of studies specifically focusing on DCC shifts. Here, we establish a connection between DCC and its radiative effects (DCCRE), revealing that the DCC has tended to warm the climate over the past 13 years. We found that the centroid position determines the warming or cooling effect of DCCRE, while the magnitude of the amplitude influences its strength. As global mean temperature (GMT) rises, low cloud centroid tends to shift from daytime to nighttime, enhancing nighttime warming effects and diminishing solar radiation reflection. Conversely, high clouds exhibit the opposite, reducing nighttime warming effects and displaying stronger DCCRE compared to low clouds. For each 1 °C increase in GMT, the total cloud DCCRE is expected to rise by 2.90 W m−2, mainly driven by low clouds contributing to an increase of 1.85 W m−2. This suggests that DCCRE may continue to warm the climate as GMT rises. These results indicate that the changes in DCC are significant for understanding climate variability. However, it should be noted that these findings are based on short-term regression analysis and further research is needed to determine whether they are related to long-term responses.
Journal Article
Corneal Mucin‐Targeting Liposome Nanoplatforms Enable Effective Treatment of Dry Eye Diseases by Integrated Regulation of Ferroptosis and Inflammation
2025
The incidence of dry eye disease (DED) has been increasing annually worldwide, creating an urgent need for new therapies. Due to the multifactorial mechanism underlying DED, traditional medications focused on decreasing ocular surface inflammation have been unable to address all the harmful factors and fail to achieve a complete clinical cure. Ferroptosis, a new form of programmed cell death characterized by lipid peroxidation, has become a pivotal contributor to dry eye oxidative stress‐driven pathology. Therefore, therapeutic targeting of ferroptosis may be an attractive option for dry eye management. Herein, a sialic acid‐targeting peptide‐modified liposome loaded with Cyclosporine A (CsA), a typical anti‐inflammatory drug, and Ferrostatin‐1 (Fer‐1), a selective ferroptosis inhibitor, is developed termed as CF@SNPs, for combing and sustaining DED treatment. This multifunctional liposomal encapsulation demonstrates excellent aqueous solubility; moreover, the sialic acid‐targeting peptide prolongs ocular surface retention, further enhancing therapeutic efficacy. The CF@SNPs treatment comprehensively alleviates DED symptoms, including improving corneal defects, augmenting goblet cell count, and restoring tear secretion. Specifically, CF@SNPs attenuate dry eye pathology by suppressing p53‐SLC7A11‐GSH‐dependent ferroptosis and TNF‐α‐associated inflammatory cascades, accompanied by favorable biocompatibility in vivo. These results underscore the promising potential of this superior nano‐formulation for DED pharmacotherapy. A sialic acid‐targeting peptide‐modified liposome loaded with Cyclosporine A and Ferrostatin‐1, termed CF@SNPs, is developed for combating DED. The CF@SNPs comprehensively alleviated DED symptoms, including improving corneal defects, augmenting goblet cell count, and restoring tear secretion. Specifically, CF@SNPs attenuated dry eye pathology by suppressing p53‐SLC7A11‐GSH‐dependent ferroptosis and TNF‐α‐associated inflammatory cascades, accompanied by favorable biocompatibility.
Journal Article
Blockade of CD73 potentiates radiotherapy antitumor immunity and abscopal effects via STING pathway
2024
Radiotherapy (RT) is a crucial treatment for colorectal cancer (CRC) patients, but it often fails to induce systemic antitumor immunity. CD73, an immunomodulatory factor, is upregulated after RT and associated with poor prognosis in CRC patients. This study aims to elucidate the mechanisms driving RT-induced CD73 upregulation in CRC and investigate how combining RT with CD73 blockade stimulates immune responses and induces abscopal effects. Findings revealed that RT-induced CD73 upregulation is mediated by the ataxia telangiectasia and Rad3-related (ATR) pathway and correlated with RT tolerance, as demonstrated through flow cytometry, immunofluorescence, and Western Blotting. Using flow cytometry and multicolor immunofluorescence, experiments demonstrated that in CRC subcutaneous tumor models, combination therapy reduces the infiltration of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and regulatory T cells (Tregs) while increasing dendritic cells (DCs) and CD8 + T cells, resulting in superior antitumor responses. Additionally, results from flow cytometry, Western Blot, and RNA sequencing demonstrated that combination therapy enhances the antigen-presenting ability of DCs and activates tumor antigen-specific CD8 + T cells, improving their function and delaying their depletion. The activation of the cGAS-STING and IFN-I pathways is crucial for this effect. In summary, the integration of RT with CD73 blockade effectively reverses the immunosuppressive TME and invigorates CD8 + T cell-driven, specific antitumor immune responses. These insights shed fresh light on the mechanisms governing the synergistic modulation of immunity by RT and CD73 blockade in CRC, offering promising avenues for the advancement of therapeutic strategies against CRC.
Journal Article
Effect of Rolling Process and Aging on the Microstructure and Properties of Cu-1.0Cr-0.1Zr Alloy
2023
In order to study the effect of the rolling process and aging on the microstructure evolution and mechanical and tribological properties of the material, room-temperature rolling (RTR), cryogenic rolling (CR), and deep cryogenic treatment after rolling (RTR + DCT) experiments were carried out on a Cu-1.0Cr-0.1Zr alloy by a large plastic deformation process. Alloy plates were aged at 550 °C for 60 min. Different rolling processes and aging treatments have different effects on the microstructure and properties of alloy plates. The alloy plate is rolled and deformed, and the grains change from equiaxed to layered. Compared with RTR and RTR + DCT treatment, CR can promote the precipitation of the Cr phase and the degree of grain fragmentation is greater. After aging treatment, the Cu-Zr mesophase compounds in the microstructure increased, the alloys treated with CR and RTR + DCT appeared to be partially recrystallized, and the number of twins in the CR alloy plate was significantly more than that of RTR + DCT. The ultimate tensile strength of the alloy plate reached 553 MPa and the hardness reached 170 HV after cryogenic rolling with 90% deformation, which indicates that CR treatment can further improve the physical properties of the alloy plate. After aging at 550 °C for 60 min, the RTR 90% + DCT alloy plate has a tensile strength of 498 MPa and an elongation of 47.9%, which is three times that of the as-rolled alloy plate. From the research on the tribological properties of alloy plates, we learned that the main wear mechanisms in the wear forms of CR and RTR + DCT alloy plates are adhesive wear and abrasive wear. Adhesive wear is dominant in the early stage, while abrasive wear is the dominant mechanism in the later stage of wear. The friction coefficient of the CR 90% alloy plate in the TD direction is close to 0.55, and the wear rate is 2.9 × 10−4 mm3/Nm, indicating that the CR treatment further improves the wear resistance of the alloy plates.
Journal Article
Preparation and Properties of Fractionated Soybean Protein Isolate Films
2021
Soybean protein isolate (SPI) and its four fractionated products (7S globulin, 11S globulin, upper soybean residue, and lower soybean residue) were compared by fabricating films and film liquids. The separation and grading effects, rheological properties of the film liquids, and difficulty in uncovering the films, in addition to the mechanical properties, water vapor permeability, oil permeability, and surface morphology of the films, were investigated. Results showed that the centrifugal precipitation method could be used to produce fractionated products. The 7S and 11S globulin films exhibited better hydrogels at lower shear rates than the other SPIs; however, they were more difficult to uncover. The tensile strength of the graded films decreased by varying degrees. However, the elongation at the break of the upper soybean residue film considerably increased, reaching 70.47%. Moreover, the permeability and surface morphology of the film were enhanced or weakened. The fractionated products, 7S and 11S globulin films, exhibited better performance. Overall, this study provides a basis for the improved development and use of fractioned SPI products.
Journal Article
Monte-Carlo calculation of fission process for neutron-induced typical actinide nuclei fission
by
Lu, Xiaolong
,
Wei, Zheng
,
Liu, Changqi
in
Kinetic energy
,
Monte Carlo simulation
,
Nuclear fission
2020
A global potential-driving model with well-determined parameters is proposed by uniting the empirical asymmetric fission potential and the empirical symmetric fission potential, which can precisely calculate the pre-neutron-emission mass distributions for neutron-induced actinide nuclei fission. Based on the developed potential-driving model, Monte-Carlo code calculates the characteristics of fission reaction process for neutron-induced 241 Am fission. Typical calculated results, including yields, kinetic energy distributions, fission neutron spectrum and decay γ-ray spectrum, are compared with experimental data and evaluated data. It shows that the Monte-Carlo calculated results agree quite well with the experiment data, which indicate that Monte-Carlo code with the developed potential-driving model can reproduce and predict the characteristics of fission reaction process at reasonable energy ranges. Given the well predictions on the characteristics of fission reaction process, Monte-Carlo code with the developed potential-driving model can guide for the physical design of nuclear fission engineering.
Journal Article