Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
111
result(s) for
"Hanasaki, Naota"
Sort by:
Role of dams in reducing global flood exposure under climate change
2021
Globally, flood risk is projected to increase in the future due to climate change and population growth. Here, we quantify the role of dams in flood mitigation, previously unaccounted for in global flood studies, by simulating the floodplain dynamics and flow regulation by dams. We show that, ignoring flow regulation by dams, the average number of people exposed to flooding below dams amount to 9.1 and 15.3 million per year, by the end of the 21
st
century (holding population constant), for the representative concentration pathway (RCP) 2.6 and 6.0, respectively. Accounting for dams reduces the number of people exposed to floods by 20.6 and 12.9% (for RCP2.6 and RCP6.0, respectively). While environmental problems caused by dams warrant further investigations, our results indicate that consideration of dams significantly affect the estimation of future population exposure to flood, emphasizing the need to integrate them in model-based impact analysis of climate change.
Global flood risk is assessed in this study; in particular, the authors describe, based on a modeling approach, the positive effect of river dams on mitigating flood hazards to people.
Journal Article
Global terrestrial water storage and drought severity under climate change
by
Satoh Yusuke
,
Gudmundsson Lukas
,
Müller, Schmied Hannes
in
21st century
,
Climate change
,
Climate change mitigation
2021
Terrestrial water storage (TWS) modulates the hydrological cycle and is a key determinant of water availability and an indicator of drought. While historical TWS variations have been increasingly studied, future changes in TWS and the linkages to droughts remain unexamined. Here, using ensemble hydrological simulations, we show that climate change could reduce TWS in many regions, especially those in the Southern Hemisphere. Strong inter-ensemble agreement indicates high confidence in the projected changes that are driven primarily by climate forcing rather than land and water management activities. Declines in TWS translate to increases in future droughts. By the late twenty-first century, the global land area and population in extreme-to-exceptional TWS drought could more than double, each increasing from 3% during 1976–2005 to 7% and 8%, respectively. Our findings highlight the importance of climate change mitigation to avoid adverse TWS impacts and increased droughts, and the need for improved water resource management and adaptation.Projections of terrestrial water storage (TWS)—the sum of all continental water—are key to water resource and drought estimates. A hydrological model ensemble predicts climate warming will more than double the land area and population exposed to extreme TWS drought by the late twenty-first century.
Journal Article
Evolution of the global virtual water trade network
by
Dalin, Carole
,
Hanasaki, Naota
,
Konar, Megan
in
Agricultural commodities
,
Agriculture
,
Agriculture - economics
2012
Global freshwater resources are under increasing pressure from economic development, population growth, and climate change. The international trade of water-intensive products (e.g., agricultural commodities) or virtual water trade has been suggested as a way to save water globally. We focus on the virtual water trade network associated with international food trade built with annual trade data and annual modeled virtual water content. The evolution of this network from 1986 to 2007 is analyzed and linked to trade policies, socioeconomic circumstances, and agricultural efficiency. We find that the number of trade connections and the volume of water associated with global food trade more than doubled in 22 years. Despite this growth, constant organizational features were observed in the network. However, both regional and national virtual water trade patterns significantly changed. Indeed, Asia increased its virtual water imports by more than 170%, switching from North America to South America as its main partner, whereas North America oriented to a growing intraregional trade. A dramatic rise in China's virtual water imports is associated with its increased soy imports after a domestic policy shift in 2000. Significantly, this shift has led the global soy market to save water on a global scale, but it also relies on expanding soy production in Brazil, which contributes to deforestation in the Amazon. We find that the international food trade has led to enhanced savings in global water resources over time, indicating its growing efficiency in terms of global water use.
Journal Article
The timing of unprecedented hydrological drought under climate change
by
Gosling, Simon Newland
,
Yokohata, Tokuta
,
Byers, Edward
in
704/106/242
,
704/106/694/2739
,
704/242
2022
Droughts that exceed the magnitudes of historical variation ranges could occur increasingly frequently under future climate conditions. However, the time of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and existing water resource management measures and estimate the time of the first emergence of unprecedented regional drought conditions centered on the low-flow season. The times are detected for several subcontinental-scale regions, and three regions, namely, Southwestern South America, Mediterranean Europe, and Northern Africa, exhibit particularly robust results under the high-emission scenario. These three regions are expected to confront unprecedented conditions within the next 30 years with a high likelihood regardless of the emission scenarios. In addition, the results obtained herein demonstrate the benefits of the lower-emission pathway in reducing the likelihood of emergence. The Paris Agreement goals are shown to be effective in reducing the likelihood to the unlikely level in most regions. However, appropriate and prior adaptation measures are considered indispensable when facing unprecedented drought conditions. The results of this study underscore the importance of improving drought preparedness within the considered time horizons.
Significant regional disparities exist in the time left to prepare for unprecedented drought and how much we can buy time depending on climate scenarios. Specific regions pass this timing by the middle of 21st century even with stringent mitigation.
Journal Article
Global water scarcity including surface water quality and expansions of clean water technologies
by
Franssen, Wietse H P
,
Jones, Edward R
,
Flörke, Martina
in
Clean technology
,
Desalination
,
Economic analysis
2021
Water scarcity threatens people in various regions, and has predominantly been studied from a water quantity perspective only. Here we show that global water scarcity is driven by both water quantity and water quality issues, and quantify expansions in clean water technologies (i.e. desalination and treated wastewater reuse) to 'reduce the number of people suffering from water scarcity' as urgently required by UN's Sustainable Development Goal 6. Including water quality (i.e. water temperature, salinity, organic pollution and nutrients) contributes to an increase in percentage of world's population currently suffering from severe water scarcity from an annual average of 30% (22%-35% monthly range; water quantity only) to 40% (31%-46%; both water quantity and quality). Water quality impacts are in particular high in severe water scarcity regions, such as in eastern China and India. In these regions, excessive sectoral water withdrawals do not only contribute to water scarcity from a water quantity perspective, but polluted return flows degrade water quality, exacerbating water scarcity. We show that expanding desalination (from 2.9 to 13.6 billion m3 month−1) and treated wastewater uses (from 1.6 to 4.0 billion m3 month−1) can strongly reduce water scarcity levels and the number of people affected, especially in Asia, although the side effects (e.g. brine, energy demand, economic costs) must be considered. The presented results have potential for follow-up integrated analyses accounting for technical and economic constraints of expanding desalination and treated wastewater reuse across the world.
Journal Article
Global water resources affected by human interventions and climate change
by
Ludwig, Fulco
,
Haddeland, Ingjerd
,
Konzmann, Markus
in
Agricultural Irrigation - statistics & numerical data
,
air temperature
,
anthropogenic activities
2014
Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.
Journal Article
Evaluation and Future Projection of Chinese Precipitation Extremes Using Large Ensemble High-Resolution Climate Simulations
by
Duan, Weili
,
Wang, Yi
,
Shiogama, Hideo
in
Atmospheric circulation
,
Atmospheric circulation models
,
Climate
2019
Evaluation of Chinese precipitation extremes is conducted based on large ensemble projections of the present climate and 4-K-warmer climates derived from a high-resolution atmospheric general circulation model. The model reproduced the overall trend and magnitude of total precipitation and extreme precipitation events for China reasonably well, revealing that this dataset can represent localized precipitation extremes. Precipitation extremes are more frequent and more severe in future projections under 4-K-warmer climates than in the representative concentration pathway 8.5 (RCP8.5) scenario of phase 5 of the Coupled Model Intercomparison Project (CMIP5). Our results show that using a large-ensemble simulation can improve the ability to estimate with high precision both the precipitation mean and the precipitation extremes compared with small numbers of simulations, and the averaged maximum yearly precipitation will be likely to increase by approximately 18% under a +4-K future in southern China compared with the past. Finally, uncertainty evaluation in future precipitation projections indicates that the component caused by the difference in six ΔSST patterns is more important in southern China compared with the component due to the atmospheric internal variability. All these results could provide valuable insights in simulating and predicting precipitation extremes in China.
Journal Article
Water resources transfers through Chinese interprovincial and foreign food trade
by
Dalin, Carole
,
Hanasaki, Naota
,
Rodriguez-lturbe, Ignacio
in
Agricultural land
,
Agriculture
,
arable soils
2014
China’s water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability—with abundant agricultural land and little water resources in the north—increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities’ virtual water content to build China’s domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China’s domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China’s soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km ³/y irrigation water savings, 41 km ³/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.
Journal Article
The effects of afforestation as an adaptation option: a case study in the upper Chao Phraya River basin
2020
The risks of flood and drought have been projected to increase in many regions due to global warming. Afforestation is considered an adaptation option because it reduces flood risks by decreasing total runoff and peak river discharge, but it also exacerbates drought risks by increasing evapotranspiration. In this study, both effects of afforestation were evaluated in comparison with changes caused by climate warming from the viewpoint of an adaptation measure, using a land surface model. The upper Chao Phraya River basin was taken as a case study. The present climate was set as a base condition and future climate conditions projected by the moderate (RCP4.5) and strong (RCP8.5) warming scenarios in the middle and late 21st century were used. The effects of afforestation were much smaller than the changes caused by warming even with the extreme forest area expansion and soil property changes. The effect of afforestation that reduced runoff was marked in the wet season, whereas the effect of afforestation that increased evapotranspiration was noticeable in the dry season leading to little increase in dry-season runoff. These results indicate that both the decrease in runoff that reduces flood risks in the wet season and the increase in evapotranspiration that exacerbates drought risks in the dry season should be taken into consideration when evaluating the hydrological effects of afforestation under global warming.
Journal Article
Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions
2018
The ongoing emission of greenhouse gases (GHGs) is triggering changes in many climate hazards that can impact humanity. We found traceable evidence for 467 pathways by which human health, water, food, economy, infrastructure and security have been recently impacted by climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms, sea-level rise and changes in natural land cover and ocean chemistry. By 2100, the world’s population will be exposed concurrently to the equivalent of the largest magnitude in one of these hazards if emmisions are aggressively reduced, or three if they are not, with some tropical coastal areas facing up to six simultaneous hazards. These findings highlight the fact that GHG emissions pose a broad threat to humanity by intensifying multiple hazards to which humanity is vulnerable.
Journal Article