Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Hansen, Jon Ulf"
Sort by:
Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors
by
Krahn, Daniel
,
Jimenez-Castellanos, Juan Carlos
,
Kiuru, Paula
in
631/154/309
,
631/154/309/2144
,
631/154/309/2419
2022
Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-β-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential β-lactamase stable β-lactam mimics. Subsequent structure–activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL–carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.
The efficacy of carbapenem antibiotics can be compromised by metallo-β-lactamases, but a high-throughput screen followed by optimization has now enabled the discovery of indole-2-carboxylates (InCs) as potent broad-spectrum metallo-β-lactamase inhibitors. The results highlight the potential of InC–carbapenem combinations for clinical use as well as mechanism-guided approaches to combatting globally disseminated antibiotic resistant mechanisms.
Journal Article
A non-enzymatic, isothermal strand displacement and amplification assay for rapid detection of SARS-CoV-2 RNA
by
Jan Gorodkin
,
Thomas Lars Benfield
,
Tao Zheng
in
COVID-19
,
COVID-19 - diagnosis
,
COVID-19 - virology
2021
The current nucleic acid signal amplification methods for SARS-CoV-2 RNA detection heavily rely on the functions of biological enzymes which imposes stringent transportation and storage conditions, high cost and global supply shortages. Here, a non-enzymatic whole genome detection method based on a simple isothermal signal amplification approach is developed for rapid detection of SARS-CoV-2 RNA and potentially any types of nucleic acids regardless of their size. The assay, termed non-enzymatic isothermal strand displacement and amplification (NISDA), is able to quantify 10 RNA copies.µL
. In 164 clinical oropharyngeal RNA samples, NISDA assay is 100 % specific, and it is 96.77% and 100% sensitive when setting up in the laboratory and hospital, respectively. The NISDA assay does not require RNA reverse-transcription step and is fast (<30 min), affordable, highly robust at room temperature (>1 month), isothermal (42 °C) and user-friendly, making it an excellent assay for broad-based testing.
Journal Article
RETRACTED ARTICLE: A non-enzymatic, isothermal strand displacement and amplification assay for rapid detection of SARS-CoV-2 RNA
2021
The current nucleic acid signal amplification methods for SARS-CoV-2 RNA detection heavily rely on the functions of biological enzymes which imposes stringent transportation and storage conditions, high cost and global supply shortages. Here, a non-enzymatic whole genome detection method based on a simple isothermal signal amplification approach is developed for rapid detection of SARS-CoV-2 RNA and potentially any types of nucleic acids regardless of their size. The assay, termed non-enzymatic isothermal strand displacement and amplification (NISDA), is able to quantify 10 RNA copies.µL
−1
. In 164 clinical oropharyngeal RNA samples, NISDA assay is 100 % specific, and it is 96.77% and 100% sensitive when setting up in the laboratory and hospital, respectively. The NISDA assay does not require RNA reverse-transcription step and is fast (<30 min), affordable, highly robust at room temperature (>1 month), isothermal (42 °C) and user-friendly, making it an excellent assay for broad-based testing.
The reliance on enzymes in SARS-CoV-2 RNA detection imposes limits on transport and storage conditions. Here the authors use non-enzymatic isothermal amplification to detect RNA with no need for reverse transcription.
Journal Article