Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
169
result(s) for
"Hansen, Per Christian"
Sort by:
Least squares data fitting with applications
by
Hansen, Per Christian
,
Pereyra, Víctor
,
Scherer, Godela
in
Applied
,
Curve fitting
,
Least squares
2013,2012
A lucid explanation of the intricacies of both simple and complex least squares methods.
As one of the classical statistical regression techniques, and often the first to be taught to new students, least squares fitting can be a very effective tool in data analysis. Given measured data, we establish a relationship between independent and dependent variables so that we can use the data predictively. The main concern of Least Squares Data Fitting with Applications is how to do this on a computer with efficient and robust computational methods for linear and nonlinear relationships. The presentation also establishes a link between the statistical setting and the computational issues.
In a number of applications, the accuracy and efficiency of the least squares fit is central, and Per Christian Hansen, Víctor Pereyra, and Godela Scherer survey modern computational methods and illustrate them in fields ranging from engineering and environmental sciences to geophysics. Anyone working with problems of linear and nonlinear least squares fitting will find this book invaluable as a hands-on guide, with accessible text and carefully explained problems.
Included are
• an overview of computational methods together with their properties and advantages
• topics from statistical regression analysis that help readers to understand and evaluate the computed solutions
• many examples that illustrate the techniques and algorithms
Least Squares Data Fitting with Applications can be used as a textbook for advanced undergraduate or graduate courses and professionals in the sciences and in engineering.
AIR Tools II: algebraic iterative reconstruction methods, improved implementation
by
Jørgensen, Jakob Sauer
,
Hansen, Per Christian
in
Algebra
,
Computed tomography
,
Image reconstruction
2018
We present a MATLAB software package with efficient, robust, and flexible implementations of algebraic iterative reconstruction (AIR) methods for computing regularized solutions to discretizations of inverse problems. These methods are of particular interest in computed tomography and similar problems where they easily adapt to the particular geometry of the problem. All our methods are equipped with stopping rules as well as heuristics for computing a good relaxation parameter, and we also provide several test problems from tomography. The package is intended for users who want to experiment with algebraic iterative methods and their convergence properties. The present software is a much expanded and improved version of the package AIR Tools from 2012, based on a new modular design. In addition to improved performance and memory use, we provide more flexible iterative methods, a column-action method, new test problems, new demo functions, and—perhaps most important—the ability to use function handles instead of (sparse) matrices, allowing larger problems to be handled.
Journal Article
Regularization Tools version 4.0 for Matlab 7.3
2007
This communication describes version 4.0 of Regularization Tools, a Matlab package for analysis and solution of discrete ill-posed problems. The new version allows for under-determined problems, and it is expanded with several new iterative methods, as well as new test problems and new parameter-choice methods.
Journal Article
Algorithms and software for total variation image reconstruction via first-order methods
by
Jensen, Tobias Lindstrøm
,
Hansen, Per Christian
,
Dahl, Joachim
in
Algorithms
,
Image processing
,
Image reconstruction
2010
This paper describes new algorithms and related software for total variation (TV) image reconstruction, more specifically: denoising, inpainting, and deblurring. The algorithms are based on one of Nesterov’s first-order methods, tailored to the image processing applications in such a way that, except for the mandatory regularization parameter, the user needs not specify any parameters in the algorithms. The software is written in C with interface to Matlab (version 7.5 or later), and we demonstrate its performance and use with examples.
Journal Article
Multicore Performance of Block Algebraic Iterative Reconstruction Methods
2014
Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely on semiconvergence. Block versions of these methods, based on a partitioning of the linear system, are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT. These block methods separate into two classes: those that, in each iteration, access the blocks in a sequential manner, and those that compute a result for each block in parallel and then combine these results before the next iteration. The goal of this work is to demonstrate which block methods are best suited for implementation on modern multicore computers. To compare the performance of the different block methods, we use a fixed relaxation parameter in each method, namely, the one that leads to the fastest semiconvergence. Computational results show that for multicore computers, the sequential approach is preferable.
Journal Article
Analysis of Discrete Ill-Posed Problems by Means of the L-Curve
1992
When discrete ill-posed problems are analyzed and solved by various numerical regularization techniques, a very convenient way to display information about the regularized solution is to plot the norm or seminorm of the solution versus the norm of the residual vector. In particular, the graph associated with Tikhonov regularization plays a central role. The main purpose of this paper is to advocate the use of this graph in the numerical treatment of discrete ill-posed problems. The graph is characterized quantitatively, and several important relations between regularized solutions and the graph are derived. It is also demonstrated that several methods for choosing the regularization parameter are related to locating a characteristic L-shaped \"corner\" of the graph.
Journal Article
IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems
by
Hansen, Per Christian
,
Gazzola, Silvia
,
Nagy, James G
in
Algorithms
,
Image reconstruction
,
Inverse problems
2019
This paper describes a new MATLAB software package of iterative regularization methods and test problems for large-scale linear inverse problems. The software package, called IR TOOLS, serves two related purposes: we provide implementations of a range of iterative solvers, including several recently proposed methods that are not available elsewhere, and we provide a set of large-scale test problems in the form of discretizations of 2D linear inverse problems. The solvers include iterative regularization methods where the regularization is due to the semi-convergence of the iterations, Tikhonov-type formulations where the regularization is explicitly formulated in the form of a regularization term, and methods that can impose bound constraints on the computed solutions. All the iterative methods are implemented in a very flexible fashion that allows the problem’s coefficient matrix to be available as a (sparse) matrix, a function handle, or an object. The most basic call to all of the various iterative methods requires only this matrix and the right hand side vector; if the method uses any special stopping criteria, regularization parameters, etc., then default values are set automatically by the code. Moreover, through the use of an optional input structure, the user can also have full control of any of the algorithm parameters. The test problems represent realistic large-scale problems found in image reconstruction and several other applications. Numerical examples illustrate the various algorithms and test problems available in this package.
Journal Article
Smoothing‐Norm Preconditioning for Regularizing Minimum‐Residual Methods
When GMRES (or a similar minimum-residual algorithm such as RRGMRES, MINRES, or MR-II) is applied to a discrete ill-posed problem with a square matrix, in some cases the iterates can be considered as regularized solutions. We show how to precondition these methods in such a way that the iterations take into account a smoothing norm for the solution. This technique is well established for CGLS, but it does not immediately carry over to minimum-residual methods when the smoothing norm is a seminorm or a Sobolev norm. We develop a new technique which works for any smoothing norm of the form $\\|L\\,x\\|_2$ and which preserves symmetry if the coefficient matrix is symmetric. We also discuss the efficient implementation of our preconditioning technique, and we demonstrate its performance with numerical examples in one and two dimensions.
Journal Article
Semiconvergence and Relaxation Parameters for Projected SIRT Algorithms
by
Hansen, Per Christian
,
Nikazad, Touraj
,
Elfving, Tommy
in
Algorithms
,
Applied mathematics
,
Computation
2012
We give a detailed study of the semiconvergence behavior of projected nonstationary simultaneous iterative reconstruction technique (SIRT) algorithms, including the projected Landweber algorithm. We also consider the use of a relaxation parameter strategy, proposed recently for the standard algorithms, for controlling the semiconvergence of the projected algorithms. We demonstrate the semiconvergence and the performance of our strategies by examples taken from tomographic imaging.
Journal Article
Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions: Survey and Analysis
2007
We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV, and ULLIV). In addition, we show how the subspace-based algorithms can be analyzed and compared by means of simple FIR filter interpretations. The algorithms are illustrated with working Matlab code and applications in speech processing.
Journal Article