Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
67
result(s) for
"Hansen, Winslow D."
Sort by:
Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests
by
Hansen, Winslow D.
,
Turner, Monica G.
,
Harvey, Brian J.
in
Biological Sciences
,
Biomass
,
Biomass burning
2019
Subalpine forests in the northern Rocky Mountains have been resilient to stand-replacing fires that historically burned at 100- to 300-year intervals. Fire intervals are projected to decline drastically as climate warms, and forests that reburn before recovering from previous fire may lose their ability to rebound. We studied recent fires in Greater Yellowstone (Wyoming, United States) and asked whether short-interval (< 30 years) stand-replacing fires can erode lodgepole pine (Pinus contorta var. latifolia) forest resilience via increased burn severity, reduced early postfire tree regeneration, reduced carbon stocks, and slower carbon recovery. During 2016, fires reburned young lodgepole pine forests that regenerated after wildfires in 1988 and 2000. During 2017, we sampled 0.25-ha plots in stand-replacing reburns (n = 18) and nearby young forests that did not reburn (n = 9). We also simulated stand development with and without reburns to assess carbon recovery trajectories. Nearly all prefire biomass was combusted (“crown fire plus”) in some reburns in which prefire trees were dense and small (≤4-cm basal diameter). Postfire tree seedling density was reduced sixfold relative to the previous (long-interval) fire, and high-density stands (>40,000 stems ha−1) were converted to sparse stands (< 1,000 stems ha−1). In reburns, coarse wood biomass and aboveground carbon stocks were reduced by 65 and 62%, respectively, relative to areas that did not reburn. Increased carbon loss plus sparse tree regeneration delayed simulated carbon recovery by > 150 years. Forests did not transition to nonforest, but extreme burn severity and reduced tree recovery fore-shadow an erosion of forest resilience.
Journal Article
Projected increases in western US forest fire despite growing fuel constraints
by
Battisti, David S.
,
Williams, A. Park
,
Hansen, Winslow D.
in
Climate models
,
Fire protection
,
Forest fires
2021
Escalating burned area in western US forests punctuated by the 2020 fire season has heightened the need to explore near-term macroscale forest-fire area trajectories. As fires remove fuels for subsequent fires, feedbacks may impose constraints on the otherwise climate-driven trend of increasing forest-fire area. Here, we test how fire-fuel feedbacks moderate near-term (2021–2050) climate-driven increases in forest-fire area across the western US. Assuming constant fuels, climate–fire models project a doubling of forest-fire area compared to 1991–2020. Fire-fuel feedbacks only modestly attenuate the projected increase in forest-fire area. Even models with strong feedbacks project increasing interannual variability in forest-fire area and more than a two-fold increase in the likelihood of years exceeding the 2020 fire season. Fuel limitations from fire-fuel feedbacks are unlikely to strongly constrain the profound climate-driven broad-scale increases in forest-fire area by the mid-21st century, highlighting the need for proactive adaptation to increased western US forest-fire impacts.
Journal Article
Successional dynamics of carbon sequestration in forests of the eastern United States
by
Canham, Charles D.
,
Hansen, Winslow D.
,
Murphy, Lora
in
abandoned land
,
Agricultural land
,
Biomass
2024
Carbon sequestration in the forests of the eastern United States is an important offset to the country's CO2 emissions. Much of the eastern forestland is the product of reforestation of abandoned agricultural land or recovery following clear‐cutting over a century ago. This has led to concerns that eastern forests are even‐aged and that rates of carbon sequestration will decline as forests increase in carbon. Our objective was to examine the successional dynamics of forest carbon sequestration—using live tree carbon stocks as a proxy for successional status—for the six broadly defined forest types present in the region. We used datasets from the National Forest Inventory (NFI) for the 31 US states from Minnesota south to Louisiana and eastward and analyzed live tree net carbon increment for 2007–2021, the period for which NFI plot remeasurement data were available for all 31 states. Spruce–fir and southern pines were the only forest types for which carbon increment declined even modestly over a significant fraction of the range of live tree carbon observed in the region, and southern pine–hardwood forests were the only forests in which predicted sequestration in live tree carbon declined to zero within the range of carbon stocks observed in the region. Northern hardwood–conifer forests, oak–hickory forests, and lowland forests experienced either no decline or a slight increase in sequestration in live tree carbon across the range of successional status observed in the region. Thus, the average stocks of live tree carbon per unit area increased steadily over the study period. At some point in succession, rates of mortality are expected to increase and balance gross growth, leading to zero net sequestration in live tree carbon. Mature and old‐growth stands, however, are rare in all six forest types, and mortality as a fraction of live tree carbon for all six forest types declined across the range of successional status present in the region. Our results thus provide no support for the hypothesis that the successional dynamics of forests in this region can be expected to lead to near‐term declines in net carbon sequestration.
Journal Article
Generalizable principles for ecosystem stewardship-based management of social-ecological systems
2014
Human pressure could compromise the provision of ecosystem services if we do not implement strategies such as ecosystem stewardship to foster sustainable trajectories. Barriers to managing systems based on ecosystem stewardship principles are pervasive, including institutional constraints and uncertain system dynamics. However, solutions to help managers overcome these barriers are less common. How can we better integrate ecosystem stewardship into natural resource management practices? I draw on examples from the literature and two broadly applicable case studies from Alaska to suggest some generalizable principles that can help managers redirect how people use and view ecosystems. These include (1) accounting for both people and ecosystems in management actions; (2) considering historical and current system dynamics, but managing flexibly for the future; (3) identifying interactions between organizational, temporal, and spatial scales; (4) embracing multiple causes in addition to multiple objectives; and (5) acknowledging that there are no panaceas and that success will be incremental. I also identify next steps to rigorously evaluate the broad utility of these principles and quickly move principles from theory to application. The findings of this study suggest that natural resource managers are poised to overcome the barriers to implementing ecosystem stewardship and to develop innovative adaptations to social-ecological problems.
Journal Article
Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying
2019
Robust tree regeneration following high-severity wildfire is key to the resilience of subalpine and boreal forests, and 21st century climate could initiate abrupt change in forests if postfire temperature and soil moisture become less suitable for tree seedling establishment. Using two widespread conifer species, lodgepole pine (Pinus contorta var. latifolia) and Douglas-fir (Pseudotsuga menziesii var. glauca), we conducted complementary experiments to ask (1) How will projected early-to mid-21st-century warming and drying affect postfire tree seedling establishment and mortality? (2) How does early seedling growth differ between species and vary with warming and drying? With a four-year in situ seed-planting experiment and a one growing season controlled-environment experiment, we explored effects of climate on tree seedling establishment, growth, and survival and identified nonlinear responses to temperature and soil moisture. In our field experiment, warmer and drier conditions, consistent with mid-21ˢᵗ-century projections, led to a 92% and 76% reduction in establishment of lodgepole pine and Douglas-fir. Within three years, all seedlings that established under warmer conditions died, as might be expected at lower elevations and lower latitudes of species' ranges. Seedling establishment and mortality also varied with aspect; approximately 1.7 times more seedlings established on mesic vs. xeric aspects, and fewer seedlings died. In the controlled-environment experiment, soil temperatures were 2.0°–5.5°C cooler than the field experiment, and warming led to increased tree seedling establishment, as might be expected at upper treeline or higher latitudes. Lodgepole pine grew taller than Douglas-fir and produced more needles with warming. Douglas-fir grew longer roots relative to shoots, compared with lodgepole pine, particularly in dry soils. Differences in early growth between species may mediate climate change effects on competitive interactions, successional trajectories, and species distributions. This study demonstrates that climate following high-severity fire exerts strong control over postfire tree regeneration in subalpine conifer forests. Climate change experiments, such as those reported here, hold great potential for identifying mechanisms that could underpin fundamental ecological change in 21st-century ecosystems.
Journal Article
Do Vegetation Fuel Reduction Treatments Alter Forest Fire Severity and Carbon Stability in California Forests?
2024
Forest fire frequency, extent, and severity have rapidly increased in recent decades across the western United States (US) due to climate change and suppression‐oriented wildfire management. Fuels reduction treatments are an increasingly popular management tool, as evidenced by California's plan to treat 1 million acres annually by 2050. However, the aggregate efficacy of fuels treatments in dry forests at regional and multi‐decadal scales is unknown. We develop a novel fuels treatment module within a coupled dynamic vegetation and fire model to study the effects of dead biomass removal from forests in the Sierra Nevada region of California. We ask how annual treatment extent, stand‐level treatment intensiveness, and spatial treatment placement alter fire severity and live carbon loss. We find that a ∼30% reduction in stand‐replacing fire was achieved under our baseline treatment scenario of 1,000 km2 year−1 after a 100‐year treatment period. Prioritizing the most fuel‐heavy stands based on precise fuel distributions yielded cumulative reductions in pyrogenic stand‐replacement of up to 50%. Both removing constraints on treatment location due to remoteness, topography, and management jurisdiction and prioritizing the most fuel‐heavy stands yielded the highest stand‐replacement rate reduction of ∼90%. Even treatments that succeeded in lowering aggregate fire severity often took multiple decades to yield measurable effects, and avoided live carbon loss remained negligible across scenarios. Our results suggest that strategically placed fuels treatments are a promising tool for controlling forest fire severity at regional, multi‐decadal scales, but may be less effective for mitigating live carbon losses. Plain Language Summary California has seen a marked increase in forest fire activity in recent decades. This trend is expected to continue with climate change, endangering lives and altering ecosystems. Fuels reduction treatments, including controlled burning and mechanical removal of woody debris from fire‐prone forests, have received increasing policy attention in recent years as a wildfire mitigation strategy. However, the impacts of regional‐scale, multi‐decadal fuels reduction programs are not well understood. We use a coupled dynamic vegetation and fire model to compare the impacts of different fuels treatment strategies to understand how intersecting technical and political constraints impact treatment efficacy over 100 years of treatments. We find that precise assignment of treatments to the most fuel‐heavy stands in the region could decrease cumulative avoided fire‐driven stand‐replacement rates by ∼50% compared with no‐treatment simulations, and by ∼30% when prioritization of fuel loading was lower. Opening remote, rugged, and multi‐stakeholder lands for treatment in tandem with high prioritization of fuel loading could increase total avoided stand mortality events to ∼90%. Overall, avoided live carbon loss rates are less sensitive to treatment, and remained relatively small in absolute terms. Importantly, we found that even effective treatments may take multiple decades to yield measurable results on a regional scale. Key Points Fuels treatments are increasingly legislated as a mitigation tool to adapt to the changing wildfire regime in the western United States Fuels reduction programs that identify high risk forests decrease fire severity, but treatment effects only emerge after several decades Prioritizing treatments of fuel‐heavy stands minimizes the time to significant treatment effects and maximizes fire severity reductions
Journal Article
Forest Carbon Storage in the Western United States: Distribution, Drivers, and Trends
by
Trugman, Anna T.
,
Parks, Sean A.
,
Hall, Jazlynn
in
Carbon
,
Carbon cycle
,
Carbon sequestration
2024
Forests are a large carbon sink and could serve as natural climate solutions that help moderate future warming. Thus, establishing forest carbon baselines is essential for tracking climate‐mitigation targets. Western US forests are natural climate solution hotspots but are profoundly threatened by drought and altered disturbance regimes. How these factors shape spatial patterns of carbon storage and carbon change over time is poorly resolved. Here, we estimate live and dead forest carbon density in 19 forested western US ecoregions with national inventory data (2005–2019) to determine: (a) current carbon distributions, (b) underpinning drivers, and (c) recent trends. Potential drivers of current carbon included harvest, wildfire, insect and disease, topography, and climate. Using random forests, we evaluated driver importance and relationships with current live and dead carbon within ecoregions. We assessed trends using linear models. Pacific Northwest (PNW) and Southwest (SW) ecoregions were most and least carbon dense, respectively. Climate was an important carbon driver in the SW and Lower Rockies. Fire reduced live and increased dead carbon, and was most important in the Upper Rockies and California. No ecoregion was unaffected by fire. Harvest and private ownership reduced carbon, particularly in the PNW. Since 2005, live carbon declined across much of the western US, likely from drought and fire. Carbon has increased in PNW ecoregions, likely recovering from past harvest, but recent record fire years may alter trajectories. Our results provide insight into western US forest carbon function and future vulnerabilities, which is vital for effective climate change mitigation strategies. Plain Language Summary We investigated the role of western US forests as natural climate solutions by analyzing current forest carbon storage and trends from 2005 to 2019 across 19 forested regions. We found that the Pacific Northwest stores the most carbon, while the Southwest stores the least. Climate, wildfires, and human activities determined carbon amounts. For instance, climate is important in the Southwest and Lower Rockies, while wildfires impact the entire western US, but particularly the Upper Rockies and California. Human activities like harvesting and private ownership, decrease carbon, particularly in the Pacific Northwest. Since 2005, live carbon has declined in many western US areas, likely due to drought and fires. The study highlights the vulnerability of western US forests to climate‐related and human threats to carbon, providing crucial insights for effective climate change mitigation strategies. Understanding these dynamics is essential for scientists, policymakers, and educators working toward sustainable forest management and climate solutions in the region. Key Points Live carbon has declined across much of western United States forests, likely due to drought and fire, resulting in an increase in dead carbon In the Pacific Northwest (PNW), harvest led to reduced carbon, but recovery from past harvest likely caused carbon to increase since 2005 Our results provide a baseline from which to evaluate future changes and inform management strategies
Journal Article
It takes a few to tango
2018
Environmental change is accelerating in the 21st century, but how multiple drivers may interact to alter forest resilience remains uncertain. In forests affected by large high-severity disturbances, tree regeneration is a resilience linchpin that shapes successional trajectories for decades. We modeled stands of two widespread western U.S. conifers, Douglas-fir (Pseudotsuga menziesii var. glauca), and lodgepole pine (Pinus contorta var. latifolia), in Yellowstone National Park (Wyoming, USA) to ask (1) What combinations of distance to seed source, fire return interval, and warming-drying conditions cause postfire tree-regeneration failure? (2) If postfire tree regeneration was successful, how does early tree density differ under future climate relative to historical climate? We conducted a stand-level (1 ha) factorial simulation experiment using the individual-based forest process model iLand to identify combinations of fire return interval (11–100 yr), distance to seed source (50–1,000 m), and climate (historical, mid-21st century, late-21st century) where trees failed to regenerate by 30-yr postfire. If regeneration was successful, we compared stand densities between climate periods. Simulated postfire regeneration were surprisingly resilient to changing climate and fire drivers. Douglas-fir regeneration failed more frequently (55%) than lodgepole pine (28% and 16% for non-serotinous and serotinous stands, respectively). Distance to seed source was an important driver of regeneration failure for Douglas-fir and non-serotinous lodgepole pine; regeneration never failed when stands were 50 m from a seed source and nearly always failed when stands were 1 km away. Regeneration of serotinous lodgepole pine only failed when fire return intervals were ≤20 yr and stands were far (1 km) from a seed source. Warming climate increased regeneration success for Douglas-fir but did not affect lodgepole pine. If regeneration was successful, postfire density varied with climate. Douglas-fir and serotinous lodgepole pine regeneration density both increased under 21st-century climate but in response to different climate variables (growing season length vs. cold limitation). Results suggest that, given a warmer future with larger and more frequent fires, a greater number of stands that fail to regenerate after fires combined with increasing density in stands where regeneration is successful could produce a more coarse-grained forest landscape.
Journal Article
Growing impact of wildfire on western US water supply
by
Bjarke, Nels R.
,
Mankin, Justin S.
,
Varuolo-Clarke, Arianna M.
in
Basins
,
Climate Change
,
Climate models
2022
Streamflow often increases after fire, but the persistence of this effect and its importance to present and future regional water resources are unclear. This paper addresses these knowledge gaps for the western United States (WUS), where annual forest fire area increased by more than 1,100% during 1984 to 2020. Among 72 forested basins across the WUS that burned between 1984 and 2019, the multibasin mean streamflow was significantly elevated by 0.19 SDs (P < 0.01) for an average of 6 water years postfire, compared to the range of results expected from climate alone. Significance is assessed by comparing prefire and postfire streamflow responses to climate and also to streamflow among 107 control basins that experienced little to no wildfire during the study period. The streamflow response scales with fire extent: among the 29 basins where > 20% of forest area burned in a year, streamflow over the first 6 water years postfire increased by a multibasin average of 0.38 SDs, or 30%. Postfire streamflow increases were significant in all four seasons. Historical fire–climate relationships combined with climate model projections suggest that 2021 to 2050 will see repeated years when climate is more fire-conducive than in 2020, the year currently holding the modern record for WUS forest area burned. These findings center on relatively small, minimally managed basins, but our results suggest that burned areas will grow enough over the next 3 decades to enhance streamflow at regional scales. Wildfire is an emerging driver of runoff change that will increasingly alter climate impacts on water supplies and runoff-related risks.
Journal Article
Can wildland fire management alter 21st-century subalpine fire and forests in Grand Teton National Park, Wyoming, USA?
by
Hansen, Winslow D.
,
Rammer, Werner
,
Turner, Monica G.
in
Age composition
,
Burning
,
California
2020
In subalpine forests of the western United States that historically experienced infrequent, high-severity fire, whether fire management can shape 21st-century fire regimes and forest dynamics to meet natural resource objectives is not known. Managed wildfire use (i.e., allowing lightning-ignited fires to burn when risk is low instead of suppressing them) is one approach for maintaining natural fire regimes and fostering mosaics of forest structure, stand age, and tree-species composition, while protecting people and property. However, little guidance exists for where and when this strategy may be effective with climate change. We simulated most of the contiguous forest in Grand Teton National Park, Wyoming, USA to ask: (1) how would subalpine fires and forest structure be different if fires had not been suppressed during the last three decades? And (2) what is the relative influence of climate change vs. fire management strategy on future fire and forests? We contrasted fire and forests from 1989 to 2098 under two fire management scenarios (managed wildfire use and fire suppression), two general circulation models (CNRM-CM5 and GFDL-ESM2M), and two representative concentration pathways (8.5 and 4.5). We found little difference between management scenarios in the number, size, or severity of fires during the last three decades. With 21st-century warming, fire activity increased rapidly, particularly after 2050, and followed nearly identical trajectories in both management scenarios. Area burned per year between 2018 and 2099 was 1,700% greater than in the last three decades (1989–2017). Large areas of forest were abruptly lost; only 65% of the original 40,178 ha of forest remained by 2098. However, forests stayed connected and fuels were abundant enough to support profound increases in burning through this century. Our results indicate that strategies emphasizing managed wildfire use, rather than suppression, will not alter climate-induced changes to fire and forests in subalpine landscapes of western North America. This suggests that managers may continue to have flexibility to strategically suppress subalpine fires without concern for long-term consequences, in distinct contrast with dry conifer forests of the Rocky Mountains and mixed conifer forest of California where maintaining low fuel loads is essential for sustaining frequent, low-severity surface fire regimes.
Journal Article