Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
109
result(s) for
"Hanson, M. Bradley"
Sort by:
Pathology findings and correlation with body condition index in stranded killer whales (Orcinus orca) in the northeastern Pacific and Hawaii from 2004 to 2013
2020
Understanding health and mortality in killer whales ( Orcinus orca ) is crucial for management and conservation actions. We reviewed pathology reports from 53 animals that stranded in the eastern Pacific Ocean and Hawaii between 2004 and 2013 and used data from 35 animals that stranded from 2001 to 2017 to assess association with morphometrics, blubber thickness, body condition and cause of death. Of the 53 cases, cause of death was determined for 22 (42%) and nine additional animals demonstrated findings of significant importance for population health. Causes of calf mortalities included infectious disease, nutritional, and congenital malformations. Mortalities in sub-adults were due to trauma, malnutrition, and infectious disease and in adults due to bacterial infections, emaciation and blunt force trauma. Death related to human interaction was found in every age class. Important incidental findings included concurrent sarcocystosis and toxoplasmosis, uterine leiomyoma, vertebral periosteal proliferations, cookiecutter shark ( Isistius sp.) bite wounds, excessive tooth wear and an ingested fish hook. Blubber thickness increased significantly with body length (all p < 0.001). In contrast, there was no relationship between body length and an index of body condition (BCI). BCI was higher in animals that died from trauma. This study establishes a baseline for understanding health, nutritional status and causes of mortality in stranded killer whales. Given the evidence of direct human interactions on all age classes, in order to be most successful recovery efforts should address the threat of human interactions, especially for small endangered groups of killer whales that occur in close proximity to large human populations, interact with recreational and commercial fishers and transit established shipping lanes.
Journal Article
Genome-culture coevolution promotes rapid divergence of killer whale ecotypes
by
Gibbs, Richard A.
,
Excoffier, Laurent
,
Vinař, Tomáš
in
631/158/856
,
631/181/2481
,
631/208/457
2016
Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level.
Killer whales have evolved into specialized ecotypes based on hunting strategies and ecological niches. Here, Andrew Foote and colleagues sequenced the whole genome of individual killer whales representing 5 different ecotypes from North Pacific and Antarctic, and show expansion of small founder groups to adapt to specific ecological niches.
Journal Article
Endangered predators and endangered prey: Seasonal diet of Southern Resident killer whales
by
Sneva, John G.
,
Schorr, Gregory S.
,
Van Doornik, Donald M.
in
Biology and Life Sciences
,
Earth Sciences
,
Ecology and Environmental Sciences
2021
Understanding diet is critical for conservation of endangered predators. Southern Resident killer whales (SRKW) ( Orcinus orca ) are an endangered population occurring primarily along the outer coast and inland waters of Washington and British Columbia. Insufficient prey has been identified as a factor limiting their recovery, so a clear understanding of their seasonal diet is a high conservation priority. Previous studies have shown that their summer diet in inland waters consists primarily of Chinook salmon ( Oncorhynchus tshawytscha ), despite that species’ rarity compared to some other salmonids. During other times of the year, when occurrence patterns include other portions of their range, their diet remains largely unknown. To address this data gap, we collected feces and prey remains from October to May 2004–2017 in both the Salish Sea and outer coast waters. Using visual and genetic species identification for prey remains and genetic approaches for fecal samples, we characterized the diet of the SRKWs in fall, winter, and spring. Chinook salmon were identified as an important prey item year-round, averaging ~50% of their diet in the fall, increasing to 70–80% in the mid-winter/early spring, and increasing to nearly 100% in the spring. Other salmon species and non-salmonid fishes, also made substantial dietary contributions. The relatively high species diversity in winter suggested a possible lack of Chinook salmon, probably due to seasonally lower densities, based on SRKW’s proclivity to selectively consume this species in other seasons. A wide diversity of Chinook salmon stocks were consumed, many of which are also at risk. Although outer coast Chinook samples included 14 stocks, four rivers systems accounted for over 90% of samples, predominantly the Columbia River. Increasing the abundance of Chinook salmon stocks that inhabit the whales’ winter range may be an effective conservation strategy for this population.
Journal Article
Epidemiology of skin changes in endangered Southern Resident killer whales (Orcinus orca)
by
Nollens, Hendrik
,
Haulena, Martin
,
Giles, Deborah
in
Animals
,
Aquatic mammals
,
Biology and Life Sciences
2023
Photographic identification catalogs of individual killer whales ( Orcinus orca ) over time provide a tool for remote health assessment. We retrospectively examined digital photographs of Southern Resident killer whales in the Salish Sea to characterize skin changes and to determine if they could be an indicator of individual, pod, or population health. Using photographs collected from 2004 through 2016 from 18,697 individual whale sightings, we identified six lesions (cephalopod, erosions, gray patches, gray targets, orange on gray, and pinpoint black discoloration). Of 141 whales that were alive at some point during the study, 99% had photographic evidence of skin lesions. Using a multivariate model including age, sex, pod, and matriline across time, the point prevalence of the two most prevalent lesions, gray patches and gray targets, varied between pods and between years and showed small differences between stage classes. Despite minor differences, we document a strong increase in point prevalence of both lesion types in all three pods from 2004 through 2016. The health significance of this is not clear, but the possible relationship between these lesions and decreasing body condition and immunocompetence in an endangered, non-recovering population is a concern. Understanding the etiology and pathogenesis of these lesions is important to better understand the health significance of these skin changes that are increasing in prevalence.
Journal Article
Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon
by
Acevedo-Gutiérrez, Alejandro
,
Noren, Dawn P.
,
Shelton, Andrew O.
in
631/158/1144
,
704/158/2445
,
Animal behavior
2017
Many marine mammal predators, particularly pinnipeds, have increased in abundance in recent decades, generating new challenges for balancing human uses with recovery goals via ecosystem-based management. We used a spatio-temporal bioenergetics model of the Northeast Pacific Ocean to quantify how predation by three species of pinnipeds and killer whales (
Orcinus orca
) on Chinook salmon (
Oncorhynchus tshawytscha
) has changed since the 1970s along the west coast of North America, and compare these estimates to salmon fisheries. We find that from 1975 to 2015, biomass of Chinook salmon consumed by pinnipeds and killer whales increased from 6,100 to 15,200 metric tons (from 5 to 31.5 million individual salmon). Though there is variation across the regions in our model, overall, killer whales consume the largest biomass of Chinook salmon, but harbor seals (
Phoca vitulina
) consume the largest number of individuals. The decrease in adult Chinook salmon harvest from 1975–2015 was 16,400 to 9,600 metric tons. Thus, Chinook salmon removals (harvest + consumption) increased in the past 40 years despite catch reductions by fisheries, due to consumption by recovering pinnipeds and endangered killer whales. Long-term management strategies for Chinook salmon will need to consider potential conflicts between rebounding predators or endangered predators and prey.
Journal Article
Estimation of a Killer Whale (Orcinus orca) Population’s Diet Using Sequencing Analysis of DNA from Feces
by
Hempelmann, Jennifer
,
Ayres, Katherine L.
,
Lundin, Jessica I.
in
Analysis
,
Animal behavior
,
Animals
2016
Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca) in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%). Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population's summer diet.
Journal Article
Respiratory Microbiome of Endangered Southern Resident Killer Whales and Microbiota of Surrounding Sea Surface Microlayer in the Eastern North Pacific
2017
In the Salish Sea, the endangered Southern Resident Killer Whale (SRKW) is a high trophic indicator of ecosystem health. Three major threats have been identified for this population: reduced prey availability, anthropogenic contaminants, and marine vessel disturbances. These perturbations can culminate in significant morbidity and mortality, usually associated with secondary infections that have a predilection to the respiratory system. To characterize the composition of the respiratory microbiota and identify recognized pathogens of SRKW, exhaled breath samples were collected between 2006–2009 and analyzed for bacteria, fungi and viruses using (1) culture-dependent, targeted PCR-based methodologies and (2) taxonomically broad, non-culture dependent PCR-based methodologies. Results were compared with sea surface microlayer (SML) samples to characterize the respective microbial constituents. An array of bacteria and fungi in breath and SML samples were identified, as well as microorganisms that exhibited resistance to multiple antimicrobial agents. The SML microbes and respiratory microbiota carry a pathogenic risk which we propose as an additional, fourth putative stressor (pathogens), which may adversely impact the endangered SRKW population.
Journal Article
Hidden Markov models reveal temporal patterns and sex differences in killer whale behavior
by
Hanson, M. Bradley
,
Tennessen, Jennifer B.
,
Giles, Deborah A.
in
631/158/672
,
631/158/856
,
631/158/857
2019
Behavioral data can be important for effective management of endangered marine predators, but can be challenging to obtain. We utilized suction cup-attached biologging tags equipped with stereo hydrophones, triaxial accelerometers, triaxial magnetometers, pressure and temperature sensors, to characterize the subsurface behavior of an endangered population of killer whales (
Orcinus orca)
. Tags recorded depth, acoustic and movement behavior on fish-eating killer whales in the Salish Sea between 2010–2014. We tested the hypotheses that (a) distinct behavioral states can be characterized by integrating movement and acoustic variables, (b) subsurface foraging occurs in bouts, with distinct periods of searching and capture temporally separated from travel, and (c) the probabilities of transitioning between behavioral states differ by sex. Using Hidden Markov modeling of two acoustic and four movement variables, we identified five temporally distinct behavioral states. Persistence in the same state on a subsequent dive had the greatest likelihood, with the exception of deep prey pursuit, indicating that behavior was clustered in time. Additionally, females spent more time at the surface than males, and engaged in less foraging behavior. These results reveal significant complexity and sex differences in subsurface foraging behavior, and underscore the importance of incorporating behavior into the design of conservation strategies.
Journal Article
Distinguishing the Impacts of Inadequate Prey and Vessel Traffic on an Endangered Killer Whale (Orcinus orca) Population
by
Koski, Kari L.
,
Ayres, Katherine L.
,
Hempelmann, Jennifer A.
in
Accidents - statistics & numerical data
,
Animal behavior
,
Animals
2012
Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery.
Journal Article
Spatial and seasonal foraging patterns drive diet differences among north Pacific resident killer whale populations
by
Wells, Abigail H.
,
Hanson, M. Bradley
,
Matkin, Craig O.
in
Birth rate
,
Cultural transmission
,
Demographics
2024
Highly social top marine predators, including many cetaceans, exhibit culturally learned ecological behaviours such as diet preference and foraging strategy that can affect their resilience to competition or anthropogenic impacts. When these species are also endangered, conservation efforts require management strategies based on a comprehensive understanding of the variability in these behaviours. In the northeast Pacific Ocean, three partially sympatric populations of resident killer whales occupy coastal ecosystems from California to Alaska. One population (southern resident killer whales) is endangered, while another (southern Alaska resident killer whales) has exhibited positive abundance trends for the last several decades. Using 185 faecal samples collected from both populations between 2011 and 2021, we compare variability in diet preference to provide insight into differences in foraging patterns that may be linked with the relative success and decline of these populations. We find broad similarities in the diet of the two populations, with differences arising from spatiotemporal and social variability in resource use patterns, especially in the timing of shifts between target prey species. The results described here highlight the importance of comprehensive longitudinal monitoring of foraging ecology to inform management strategies for endangered, highly social top marine predators.
Journal Article