Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Hanus-Fajerska, Ewa"
Sort by:
Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants
Avoidance and reduction of soil contamination with heavy metals is one of the most serious global challenges. Nowadays, science offers us new opportunities of utilizing plants to extract toxic elements from the soil by means of phytoremediation. Plant abilities to uptake, translocate, and transform heavy metals, as well as to limit their toxicity, may be significantly enhanced via genetic engineering. This paper provides a comprehensive review of recent strategies aimed at the improvement of plant phytoremediation potential using plant transformation and employing current achievements in nuclear and cytoplasmic genome transformation. Strategies for obtaining plants suitable for effective soil clean-up and tolerant to excessive concentrations of heavy metals are critically assessed. Promising directions in genetic manipulations, such as gene silencing and cis- and intragenesis, are also discussed. Moreover, the ways of overcoming disadvantages of phytoremediation using genetic transformation approachare proposed. The knowledge gathered here could be useful for designing new research aimed at biotechnological improvement of phytoremediation efficiency.
Insight into phytohormonal modulation of defense mechanisms to salt excess in a halophyte and a glycophyte from Asteraceae family
Aims The aim of this study was to compare the efficiency of three defense mechanisms (ionic balance, osmotic adjustment and counteracting oxidative stress) under low, moderate and high soil salinity in two related species of contrasting tolerance to salinity: the halophyte Aster tripolium and the glycophyte Aster alpinus , and to elucidate their phytohormone-mediated regulation. Methods The phytohormonal profiling was performed to asses correlations between the pool of plant growth regulators and parameters depicting ionic homeostasis, osmotic adjustment and antioxidant system. Results Defense mechanisms in both species were based on accumulation/activity of distinct compounds (Na + and K + ions, antioxidants), but differences among species concerned particularly soluble carbohydrates and betaines. The halophyte accumulated mannitol, uronic acids and sucrose, while the glycophyte mostly glucose and proline-betaine. The halophyte responses also correlated with changes in the content of plant growth promoting PGRs, as well as jasmonates and benzoic acid. The glycophyte responses corresponded with changes in content of abscisic acid and ethylene precursor, as well as salicylic acid. Conclusions We provided evidence that benzoic acid rather than salicylic acid is involved in salt tolerance in the halophyte and elevated SA content may enhance vulnerability to salt excess. An important element of tolerance trait is also JA-GA network that influences the intensity of defense responses. This study uncovers new aspects of internal phytohormonal regulation of plant reaction to soil salinity and enables further insight into extremophyte biology.
Micropropagation and experimental field cultivation of Pulsatilla turczaninovii Kryl. et Serg. (Ranunculaceae)
Pulsatilla turczaninovii is an important medicinal plant, valued for high ornamental value of melliferous flowers. We assessed the efficiency of reproduction under in vitro conditions and the ex situ growth capacity of this important representative of the world flora. The seed germination percentage was assessed, followed by determination of micropropagation rate and rooting efficiency. Then, the possibility of plant development in three consecutive growing seasons was assessed. The in vitro germination percentage was approximately 55%. The highest multiplication coefficient, amounting to 5.17, was obtained on modified MS medium supplemented with 2.5 mg L−1 2iP and 1.0 mg L−1 IAA. Our study provided unique insight on biochemical background of root regeneration in P. turczaninovii. In comparison with standard auxin-supplemented rooting medium, the treatment with 1.0 mg L−1 level of ethylene precursor ACC elevated rooting by about 20%. The total content of soluble sugars was proved to be biomarker of rhizogenesis in the studied species. Their concentration was positively correlated with rooting efficiency, while a level of phenolic was positively correlated with the length of regenerated roots, and their number per rosette. The cultivation of the acclimatized material was successfully carried out and was evaluated over three subsequent years. In the third year of cultivation, the plants entered the stage of generative development and most of them bloomed profusely.Key messageThe protocol of Pulsatilla turczninowi propagation, rooting, hardening and ex situ cultivation was developed. Biochemical background of adventitious rooting process in a representative of Pulsatilla genus is reported for the first time.
Verification of Agricultural Practices for Winter Pea–Cereals Intercropping
Recently, an urgent need has been identified to increase the biodiversity of the cereal crops that dominate European farmlands. In this aspect, the addition of pea as a component of winter cereals seems justified, but the appropriate selection of the cultivars to create a mixture suitable for agricultural practice is probably essential. Therefore, arbitrarily selected winter pea cultivars were intercropped with some chosen cereals in order to assess certain yield parameters using a two-factorial field experiment conducted on brown soil. The studied factors were the cultivar of pea (Pisum sativum), ‘Pandora’ and ‘E.F.B. 33′ respectively, and the cropping system: single crop vs. cereal/legume intercropping mixture. Cereals used were rye (Secale cereale L.) ‘Amber’ and triticale (× Triticosecale) ‘Borwo’. To assess the potential of winter pea in this cultivation system, the yield level, some plant parameters (above- and belowground), and LER and CR indices were applied. Additionally, to demonstrate the effect of intercropping on pea, the root system, root nodulation, and nitrogen uptake efficiency were assessed. It was shown that yield and plant indices were closely related to the intercropping variant used. The key element determining the potential of the cultivated crops was the selection of cultivars. The most productive one was proved pea ‘E.F.B. 33’, which formed the largest number of nodules when intercropped with triticale. Moreover, it was ascertained that the drought period during the formation of nodules negatively affected their structure, which had a rather negative impact on the pea yield.
A Dual Role of Vanadium in Environmental Systems—Beneficial and Detrimental Effects on Terrestrial Plants and Humans
The importance of vanadium (V) in the functioning of land systems is extremely diverse, as this element may exert both positive and harmful effects on terrestrial organisms. It recently become considered an element of beneficial character with a range of applications for human welfare. The health-ameliorative properties of this transition element depend on its degree of oxidation and on optimal concentration in the target cells. It was found that a similar relationship applies to vascular plants. However, excessive amounts of vanadium in the environment contaminate the soil and negatively affect the majority of living organisms. A significantly elevated level of V results in the destabilization of plant physiological balance, slowing down the growth of biomass which significantly reduces yield. In turn, low doses of the appropriate vanadium ions can stimulate plant growth and development, exert cytoprotective effects, and effectively enhance the synthesis of some biologically active compounds. We present the scientific achievements of research teams dealing with such topics. The issues discussed concern the role of vanadium in the environment, particular organisms, and highlight its dualistic influence on plants. Achievements in the field of V bioremediation, with the use of appropriately selected microorganisms and plant species, are emphasized.
Long-term field study on stabilization of contaminated wastes by growing clonally reproduced Silene vulgaris calamine ecotype
Aims Pseudo-metallophyte Silene vulgaris frequently colonizes polluted areas. We investigated whether plants obtained under in vitro conditions can be used to form long-term communities on zinc-lead tailings rich in cadmium. To this end, we checked the species stabilization capacity and biochemical properties of the area subjected to long-term cultivation of a local S vulgaris ecotype. We focused on evaluation of its ability to accumulate trace metals (TMs) after 10-year cultivation period. Methods The calamine S. vulgaris ecotype was propagated in vitro and acclimatized to ex vitro conditions in a greenhouse. The plants were then replanted on plots created on the flotation settler heavily polluted with Zn, Pb and Cd. The capacity of trace metal accumulation in plant material was checked based on translocation (TF) and bio-concentration (BCF) factors. Nutrient, TMs content, and enzyme activity of substrate were determined after 1 and 10 years of cultivation and compared with the properties of bare flotation waste. Results Numerous plants obtained through vegetative in vitro propagation were planted in the field after a short hardening period. Cultivation of plant material obtained this way increased microbial activity, C concentration, and reduced TM contents in the substrate. TF calculated after the first season of S. vulgaris cultivation was similar for all metals and amounted to about 40%. After 10 years, it was the highest for Cd (50%). Independently of the experiment duration, BCF for Zn and Pb was <1, while for Cd it reached about 1.4 after 10 years for both shoots and roots. Conclusions The calamine S. vulgaris ecotype cloned in tissue culture proved useful material for stabilization of trace metal contaminated post-flotation wastes. Ten years of its cultivation in tailings rich in Zn, Pb and Cd contributed to humus layer formation and increase in microbial activity in the substrate. Thus, the beginning of soil formation was noticed in heavily polluted tailings.
Sulfur-Oxidizing Bacteria Alleviate Salt and Cadmium Stress in Halophyte Tripolium pannonicum (Jacq.) Dobrocz
The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant’s response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant’s potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant’s leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum’s tolerance to cadmium stress.
Structural, physiological and genetic diversification of Silene vulgaris ecotypes from heavy metal-contaminated areas and their synchronous in vitro cultivation
The plant communities growing on heavy metal-polluted areas have attracted considerable attention due to their unique ability to tolerate enormous amounts of toxic ions. Three ecotypes of Silene vulgaris representing calamine (CAL), serpentine (SER) and non-metallicolous (NM) populations were evaluated to reveal specific adaptation traits to harsh environment. CAL leaves presented a distinct anatomical pattern compared to leaves of SER and NM plants, pointing to their xeromorphic adaptation. These differences were accompanied by divergent accumulation and composition of photosynthetic pigments as well as antioxidant enzyme activity. In CAL ecotype, the mechanism of reactive oxygen species scavenging is based on the joint action of superoxide dismutase and catalase, but in SER ecotype on superoxide dismutase and guaiacol-type peroxidase. On the contrary, the concentration of phenylpropanoids and flavonols in the ecotypes was unchanged, implying the existence of similar pathways of their synthesis/degradation functioning in CAL and SER populations. The tested specimens showed genetic variation (atpA/MspI marker). Based on diversification of S. vulgaris populations, we focused on the elaboration of similar in vitro conditions for synchronous cultivation of various ecotypes. The most balanced shoot culture growth was obtained on MS medium containing 0.1 mg l⁻¹ NAA and 0.25 mg l⁻¹ BA, while the most abundant callogenesis was observed on MS medium enriched with 0.5 mg l⁻¹ NAA and 5.0 mg l⁻¹ BA. For the first time, unified in vitro protocols were described for metallophytes providing the opportunity to conduct basic and applied research on stress biology and tolerance mechanisms under freely controlled conditions.
Evaluation of the protective role of exogenous growth regulators against Ni toxicity in woody shrub Daphne jasminea
The study investigated nickel accumulation and its toxicity to Daphne jasminea shoots cultured in vitro with or without exogenous supplementation with phytohormones: gibberellic acid (GA3), jasmonic acid (JA), and brassinolide (BL). The aim was to verify the modulatory effect of exogenous plant growth regulators (PGRs) on plant reaction to Ni excess. The combined action of Ni and PGRs was evaluated at the anatomical, ultrastructural, and biochemical levels. Nickel toxicity was manifested in decreased biomass accretion and growth tolerance index (83–53.6%), attributed to enhanced synthesis of growth inhibitors, mainly abscisic acid. As a defence reaction, endogenous gibberellins accumulated. Exogenous GA3 ameliorated the plant reaction to Ni stress, inducing proliferation and growth rate. Ni tolerance in the presence of GA3 was attributed to peroxisomal reactions that stimulated the synthesis of endogenous JA. In contrast, the application of BL caused enhanced Ni accumulation. Plants suffered from pronounced stress due to massive oxidation. The defence strategy of plants subjected to Ni and BL involved cell wall rearrangements. Exogenous JA stimulated the synthesis of active auxins and salicylic acid, contributing to enhanced mitotic activity within explants. However, JA disturbed the integrity of chloroplasts and lamellar compartments. Our study revealed that an action of exogenous PGRs may either enhance tolerance to Ni or increase metal toxicity in D. jasminea. Particularly in in vitro culture, where explants are subjected to external phytohormonal stimuli, the combined effects of supplemental PGRs may enhance stress and substantially affect plant development. Our results provide a significant verification of exogenous PGRs activity in the modulation of plant response to nickel.
Differential Tolerance to Lead and Cadmium of Micropropagated Gypsophila fastigiata Ecotype
In vitro techniques may provide a suitable tool for effective propagation and conservation of plant species representing various ecological niches. The elaboration of such protocols is also prerequisite for selection of heavy-metal-tolerant plant material that could be afterwards used for restoration or remediation of polluted sites. In this study, culture protocol for Gypsophila fastigiata propagation was developed. The highest multiplication coefficient, which reached 6.5, and the best growth parameters were obtained on modified MS medium supplemented with 1.0 mg L−1 2iP and 0.2 mg L−1 IAA. The obtained cultures were treated with different concentrations of lead nitrate (0.1, 0.5, and 1.0 mM Pb(NO3)2) or cadmium chloride (0.5, 2.5, and 5.0 μM CdCl2). The growth parameters, photosynthetic pigments, and phenolic compound content were examined in order to evaluate whether tested metal salts can have an adverse impact on studied culture. It was ascertained that Pb ions induced growth disturbances and contributed to shoot wither. On the contrary, the proliferative shoot cultures were established on media containing Cd ions and the multiplication coefficients and shoot length increased on all media enriched with CdCl2. Chlorophylls and carotenoid contents were negatively affected by application of 5.0 μM of cadmium; nevertheless, in shoots treated with 2.5 μM CdCl2, increased accumulation of photosynthetic pigments occurred and their amount was similar to untreated culture. Adaptation to Cd was associated with stimulation of phenolic compound synthesis. Hence, we have reported on unambiguous positive result of in vitro selection procedure to obtain vigorous shoot culture tolerant to cadmium.