Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
112
result(s) for
"Harald Pauli"
Sort by:
Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps
by
Philipp Robert Semenchuk
,
Manuela Winkler
,
Andrea Lamprecht
in
alpine–nival ecotone
,
Alps region
,
Austria
2018
High mountain ecosystems and their biota are governed by low-temperature conditions and thus can be used as indicators for climate warming impacts on natural ecosystems, provided that long-term data exist.
We used data from the largest alpine to nival permanent plot site in the Alps, established in the frame of the Global Observation Research Initiative in Alpine Environments (GLORIA) on Schrankogel in the Tyrolean Alps, Austria, in 1994, and resurveyed in 2004 and 2014.
Vascular plant species richness per plot increased over the entire period, albeit to a lesser extent in the second decade, because disappearance events increased markedly in the latter period. Although presence/absence data could only marginally explain range shift dynamics, changes in species cover and plant community composition indicate an accelerating transformation towards a more warmth-demanding and more drought-adapted vegetation, which is strongest at the lowest, least rugged subsite.
Divergent responses of vertical distribution groups of species suggest that direct warming effects, rather than competitive displacement, are the primary causes of the observed patterns. The continued decrease in cryophilic species could imply that trailing edge dynamics proceed more rapidly than successful colonisation, which would favour a period of accelerated species declines.
Journal Article
Accelerated increase in plant species richness on mountain summits is linked to warming
2018
Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century
1
–
7
are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch
6
. While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying
8
,
9
, it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.
Analysis of changes in plant species richness on mountain summits over the past 145 years suggests that increased climatic warming has led to an acceleration in species richness increase.
Journal Article
Distribution of Prokaryotic Abundance and Microbial Nutrient Cycling Across a High-Alpine Altitudinal Gradient in the Austrian Central Alps is Affected by Vegetation, Temperature, and Soil Nutrients
by
Illmer, Paul
,
Hofmann, Katrin
,
Lamprecht, Andrea
in
Abundance
,
Alkaline phosphatase
,
Alpine environments
2016
Studies of the altitudinal distributions of soil microorganisms are rare or have led to contradictory results. Therefore, we studied archaeal and bacterial abundance and microbial-mediated activities across an altitudinal gradient (2700 to 3500 m) on the southwestern slope of Mt. Schrankogel (Central Alps, Austria). Sampling sites distributed over the alpine (2700 to 2900 m), the alpine-nival (3000 to 3100 m), and the nival altitudinal belts (3200 to 3500 m), which are populated by characteristic plant assemblages. Bacterial and archaeal abundances were measured via quantitative real-time PCR (qPCR). Moreover, microbial biomass C, microbial activity (dehydrogenase), and enzymes involved in carbon (CM-cellulase), nitrogen (protease), phosphorus (alkaline phosphatase), and sulfur (arylsulfatase) cycling were determined. Abundances, microbial biomass C, and activities almost linearly decreased along the gradient. Archaeal abundance experienced a sharper decrease, thus pointing to pronounced sensitivity toward environmental harshness. Additionally, abundance and activities were significantly higher in soils of the alpine belt compared with those of the nival belt, whereas the alpinenival ecotone represented a transitional area with intermediate values, thus highlighting the importance of vegetation. Archaeal abundance along the gradient was significantly related to soil temperature only, whereas bacterial abundance was significantly related to temperature and dissolved organic carbon (DOC). Soil carbon and nitrogen concentrations explained most of the variance in enzyme activities involved in the cycling of C, N, P, and S. Increasing temperature could therefore increase the abundances and activities of microorganisms either directly or indirectly via expansion of alpine vegetation to higher altitudes and increased plant cover.
Journal Article
Recent Plant Diversity Changes on Europe's Mountain Summits
2012
In mountainous regions, climate warming is expected to shift species' ranges to higher altitudes. Evidence for such shifts is still mostly from revisitations of historical sites. We present recent (2001 to 2008) changes in vascular plant species richness observed in a standardized monitoring network across Europe's major mountain ranges. Species have moved upslope on average. However, these shifts had opposite effects on the summit floras' spedes richness in boreal-temperate mountain regions (+3.9 species on average) and Mediterranean mountain regions (-1.4 species), probably because recent climatic trends have decreased the availability of water in the European south. Because Mediterranean mountains are particularly rich in endemic species, a continuation of these trends might shrink the European mountain flora, despite an average increase in summit species richness across the region.
Journal Article
Continent-wide response of mountain vegetation to climate change
by
Pelino, Giovanni
,
Nakhutsrishvili, George
,
Vogiatzakis, Ioannis
in
21st-century
,
631/158/2165
,
704/106/694
2012
Focusing on mountain plant communities across Europe, a study shows that ongoing climate change causes a gradual decline in cold-adapted species and a corresponding increase in warm-adapted species, which could be an early sign that mountain plant diversity is at risk.
Climate impact studies have indicated ecological fingerprints of recent global warming across a wide range of habitats
1
,
2
. Although these studies have shown responses from various local case studies, a coherent large-scale account on temperature-driven changes of biotic communities has been lacking
3
,
4
. Here we use 867 vegetation samples above the treeline from 60 summit sites in all major European mountain systems to show that ongoing climate change gradually transforms mountain plant communities. We provide evidence that the more cold-adapted species decline and the more warm-adapted species increase, a process described here as thermophilization. At the scale of individual mountains this general trend may not be apparent, but at the larger, continental scale we observed a significantly higher abundance of thermophilic species in 2008, compared with 2001. Thermophilization of mountain plant communities mirrors the degree of recent warming and is more pronounced in areas where the temperature increase has been higher. In view of the projected climate change
5
,
6
the observed transformation suggests a progressive decline of cold mountain habitats and their biota.
Journal Article
Limited impact of microtopography on alpine plant distribution
by
Hausharter, Johannes
,
Dullinger, Stefan
,
Hülber, Karl
in
alpine plants
,
alpine vegetation
,
climate
2024
Complex topography regulates near‐surface temperature above the treeline. It may thus sustain microrefugia for alpine plants and relax the need of shifting upward when the climate warms. The effectiveness of these microrefugia rests on the premise that plant distributions in alpine landscapes are mainly controlled by fine‐scale topographic variation.
We tested this assumption by relating the distribution of 79 plant species and 10 community attributes across 900 1 m² plots in a landscape spanning 1677 m of elevation to 17 topographical descriptors at resolutions between 1 and 301 m.
We found that the presence of most species and most community attributes were better explained by topographic variation at coarser scales (> 20 m). Fine‐scale topography is more clearly reflected in moisture than in temperature requirements of species. The elevational gradient rather than topographic variation at any scale, is the single most important driver of both species distributions and the variation in community attributes in the area studied.
We hypothesise that our results reveal a hitherto underestimated influence of spatial mass effects on alpine plant distributions. These effects can override environmental filtering at fine scales and will thus impede the survival of cold‐adapted plants in small and fragmented refugia under climate warming.
Journal Article
Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes
by
Alfredo Grau
,
Rosa Isela Meneses
,
Javier Irazábal
in
Abundance
,
Air temperature
,
Alpine environments
2017
The high tropical Andes host one of the richest alpine floras of the world, with exceptionally high levels of endemism and turnover rates. Yet, little is known about the patterns and processes that structure altitudinal and latitudinal variation in plant community diversity. Herein we present the first continental-scale comparative study of plant community diversity on summits of the tropical Andes. Data were obtained from 792 permanent vegetation plots (1 m2) within 50 summits, distributed along a 4200 km transect; summit elevations ranged between 3220 and 5498 m a.s.l. We analyzed the plant community data to assess: 1) differences in species abundance patterns in summits across the region, 2) the role of geographic distance in explaining floristic similarity and 3) the importance of altitudinal and latitudinal environmental gradients in explaining plant community composition and richness. On the basis of species abundance patterns, our summit communities were separated into two major groups: Puna and Páramo. Floristic similarity declined with increasing geographic distance between study-sites, the correlation being stronger in the more insular Páramo than in the Puna (corresponding to higher species turnover rates within the Páramo). Ordination analysis (CCA) showed that precipitation, maximum temperature and rock cover were the strongest predictors of community similarity across all summits. Generalized linear model (GLM) quasi-Poisson regression indicated that across all summits species richness increased with maximum air temperature and above-ground necromass and decreased on summits where scree was the dominant substrate. Our results point to different environmental variables as key factors for explaining vertical and latitudinal species turnover and species richness patterns on high Andean summits, offering a powerful tool to detect contrasting latitudinal and altitudinal effects of climate change across the tropical Andes.
Journal Article
Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates
by
Vittoz, Pascal
,
Bruelheide, Helge
,
Seidler, Gunnar
in
Correlation analysis
,
Environmental conditions
,
global distribution
2019
The relationship between species’ niche breadth (i.e. the range of environmental conditions under which a species can persist) and range size (i.e. the extent of its spatial distribution) has mostly been tested within geographically restricted areas but rarely at the global extent. Here, we not only tested the relationship between range size (derived from species’ distribution data) and niche breadth (derived from species’ distribution and co‐occurrence data) of 1255 plant species at the regional extent of the European Alps, but also at the global extent and across both spatial scales for a subset of 180 species. Using correlation analyses, linear models and variation partitioning, we found that species’ realized niche breadth estimated at the regional level is a weak predictor of species’ global niche breadth and range size. Against our expectations, distribution‐derived niche breadth was a better predictor for species’ range size than the co‐occurrence‐based estimate, which should, theoretically, account for more than the climatically determined niche dimensions. Our findings highlight that studies focusing on the niche breadth vs range size relationship must explicitly consider spatial mismatches that might have confounded and diminished previously reported relationships.
Journal Article
Vegetation classification and biogeography of European floodplain forests and alder carrs
by
Biurrun, Idoia
,
Lecomte, Hugues
,
Škvorc, Željko
in
Agriculture & agronomie
,
Agriculture & agronomy
,
Alnion glutinosae
2016
AIM: Formalized classifications synthesizing vegetation data at the continental scale are being attempted only now, although they are of key importance for nature conservation planning. Therefore, we aim to provide a vegetation classification and to describe the main biogeographical patterns of floodplain forests and alder carrs in Europe. LOCATION: Europe. METHODS: A database of more than 40 000 vegetation plots of floodplain forests and alder carrs across Europe was compiled. After geographic stratification, 16 392 plots were available for classification, which was performed using the supervised method Cocktail. We also searched for new associations using semi‐supervised K‐means classification. The main biogeographic patterns and climate‐related gradients in species composition were determined using detrended correspondence analysis and cluster analysis. RESULTS: Thirty associations of floodplain forests and alder carrs were distinguished, which belong to five alliances. The Alnion incanae includes riparian, seepage and hardwood floodplain forests in the nemoral and hemiboreal zones (dominated by Alnus glutinosa and Fraxinus excelsior) and in the boreal zone (dominated by A. incana). The Osmundo‐Alnion represents oceanic vegetation dominated by Alnus glutinosa, Fraxinus angustifolia and F. excelsior distributed mostly on the Iberian Peninsula and composed of species with Atlantic distribution and Iberian endemics. The Populion albae comprises floodplain forests frequently dominated by Fraxinus angustifolia, Populus alba and P. nigra that are widespread in floodplains of large rivers under summer‐dry climates in the Mediterranean region. The Platanion orientalis represents eastern Mediterranean floodplain forests dominated by Platanus orientalis. The Alnion glutinosae includes forest swamps dominated by Alnus glutinosa distributed mostly in the nemoral and hemiboreal zones. The main biogeographic patterns within European floodplain forests and alder carrs reflect the climatic contrasts between the Mediterranean, nemoral, boreal and mountain regions. Oceanic floodplain forests differ from those in the rest of Europe. The hydrological regime appears to be the most important factor influencing species composition within regions. CONCLUSIONS: This study is the first applying a formalized classification at the association level for a broad vegetation type at the continental scale. The proposed classification provides the scientific basis for the necessary improvement of the habitat classification systems used in European nature conservation.
Journal Article