Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
970 result(s) for "Harding, Kevin"
Sort by:
Significance of international life cycle data in South African extended producer responsibility
The South African extended producer's responsibility has made cradle-to-grave life cycle assessments a mandatory requirement for the paper and paper packaging industry. This is an intensive undertaking that requires a lot of data and time if primary data sets were to be created. The aim was to evaluate the applicability of using secondary and modified data sets in the life cycle assessment to speed up the process and reduce the amount of primary data required, with white-lined chipboard as the case study. Four white-lined chipboard data sets were used, a South African data set created from local industry data, a European data set from the Ecoinvent database and two modified European data sets, Scenario 1 and Scenario 2, to better represent the South African landscape. On an inventory level, the results indicated that the goal, scope and objective of the local and European life cycle assessments were similar, with minor differences. On an impact assessment level, the South African data had a much higher impact compared to the European data. This was mainly due to their reliance on fossil fuels for energy and electricity. On an uncertainty level, the uncertainty of the South African data was much higher, but this was due to the uncertainty related to the adjusted pedigree matrix and the cumulative nature of uncertainty in the life cycle inventory tiers. The results indicated that modified data sets with a base data set that has a similar goal and scope to the original South African study, and in which the data entries, data values and uncertainties are adjusted to match the South African process more closely would suffice.
India : top sights, authentic experiences
Lonely Planet's Best of India is your passport to the most relevant, up-to-date advice on what to see and skip, and what hidden discoveries await you. Marvel at the intricate floral designs on the Taj Mahal, float along Kerala's backwaters as the sun sinks behind whispering palms, and dive into the teeming bazaars, mighty fortresses and fine dining of Jaipur - all with your trusted travel companion. Discover the best of India and begin your journey now!
Extraction of Essential Oils from Lavandula × intermedia ‘Margaret Roberts’ Using Steam Distillation, Hydrodistillation, and Cellulase-Assisted Hydrodistillation: Experimentation and Cost Analysis
Lavender oil is an important essential oil with many applications. The purpose of this study was to compare different methods of essential oil extraction to determine which method would be the most effective and profitable for commercial-scale production from Lavandula × intermedia (‘Margret Roberts’) flowers and leaves. The lavender from this variety flowers year-round, providing an extended production season compared to some other lavender varieties. Steam distillation, hydrodistillation, and cellulase-assisted hydrodistillation were used to extract oil. The average extraction times for steam distillation, hydrodistillation, and cellulase-assisted hydrodistillation were 57-, 51-, and 49 min, respectively, and the average energy consumption was 15.0-, 13.4-, and 30.8 kJ/g, respectively. Cellulase-assisted hydrodistillation produced the best quality oils, with a lower camphor content and a sweeter, more pleasant smell, while steam-distilled oils had the highest camphor content, as well as a more plant-like smell. Factors affecting scale-up (surface area of cut plants, equipment loading times, energy efficiencies, safety, mixing) have been discussed, while a basic cost analysis of theoretical large-scale processes showed that hydrodistillation and cellulase-assisted hydrodistillation would be the most and least profitable methods, respectively. Overall, hydrodistillation is recommended as the best method for commercial lavender oil production.
Fish farm effluent as a nutrient source for algae biomass cultivation
One of the challenges of microalgae biotechnology is the cost of growth media nutrients, with microalgae consuming enormous quantities of fertilisers, more than other oil crops. The traditional use of synthetic fertilisers in mass cultivation of microalgae is associated with rising prices of crude oil and competition from traditional agriculture. The fact that fish farm wastewater (FFW) nutrients are released in the form preferred by microalgae (NH3 for nitrogen and PO4 -3 for phosphate), and the ability of microalgae to use nitrogen from different sources, can be exploited by using fish farm effluent rich in nutrients (nitrogen and phosphorus) in the cultivation of cheaper microalgae biomass for production of biodiesel. The cultivation of algae biomass in FFW will also serve as wastewater treatment. We reviewed the benefits and potential of fish effluent in algae cultivation for the production of biodiesel. Microalgae can utilise nutrients in FFW for different applications desirable for the production of biomass, including the accumulation of lipids, and produce a fuel with desirable proper ties. Also, treating wastewater and reducing demand for fresh water are advantageous. The high lipid content and comparable biodiesel proper ties of Chlorella sorokiniana and Scenedesmus obliquus make both species viable for FFW cultivation for biodiesel production.Significance:The cost associated with microalgae growth media nutrients can be saved by using fish farm wastewater, which contains nutrients (nitrogen and phosphorus) suitable for microalgae cultivation. Fish farm wastewater has lower nutrient concentrations when compared to standard growth media suitable for higher lipid accumulation. Microalgae used as a biodiesel feedstock, cultivated in fish farm wastewater, has added benefits, including wastewater treatment.
Eco-efficiency assessment of pork production through life-cycle assessment and product system value in South Africa
The consumption of pork as a source of animal protein has increased worldwide, especially in developing countries such as South Africa. The increase in pork demand is putting pressure on the natural environment, and the costs of production are increasing. This study sought to determine what is the eco-efficiency of pork production in a South African context. It also was meant to determine which processes in the value chain have low eco-efficiencies. Lastly, it sought to find what strategies could be recommended to improve overall eco-efficiency. Eco-efficiency was assessed by following the requirements of the International Standards Organisation ISO 14045 standard, which requires that the Life cycle assessment (LCA) method and product system value be combined. The environmental life cycle costing (LCC) method was used to determine the product system value (Value Added) of pork production. The functional unit was 1 kg of pork carcass, specifically from the cradle to the abattoir gate. The findings indicated that the pig farm and abattoir were the processes that had low eco-efficiencies and eco-efficient strategic improvements could be made. Mitigation strategies could be developed to concentrate on the production of animal feed and the use of renewable energy sources at the abattoir. The use of water could be improved by automation of the abattoir processes. Therefore, this study achieved its goal as economic and environmental areas of interest were identified in this specific case study for South Africa. This framework could be extended to study the eco-efficiency of other meat production chains and other sectors.
What material flow analysis and life cycle assessment reveal about plastic polymer production and recycling in South Africa
Global production and consumption of plastics have increased significantly in recent years. The environmental impacts associated with this trend have received growing attention internationally with single-use plastic packaging responsible for most plastic pollution. Locally, the SA Plastics Pact, the Industry Master Plan, and the National Waste Management Strategy all aim to transform the current linear sector model into a circular system by setting targets for increased collection and recycling rates and recycled content. However, the associated impacts of implementing such circular interventions have not yet been assessed across the plastics life cycle. Industrial ecology tools, material flow analysis and life cycle assessment, are used to generate mass-based indicators as well as indicators of climate damage in the form of the global warming potential. The carbon footprint of the South African plastics value chain from cradle to grave was estimated at 17.9 Mt CO2eq emissions in 2018, with 52% of these due to the local coal-based monomer production process. The end-of-life stage lacks proper waste collection for a third of the population, but contributes only 2% to the total greenhouse gas emissions, with recycling having a minimal environmental impact. Future projections of plastics production, use, disposal, and recycling for 2025 show that increasing mechanical recycling rates to achieve stated targets would start to have a significant effect on virgin polymer demand (in the order of several billion rands of sales annually) but would also reduce waste disposal by 28% relative to baseline growth and 18% below values calculated for 2018.
A lifecycle-based evaluation of greenhouse gas emissions from the plastics industry in South Africa
Increased production rates of plastic and limited disposal methods have fed concerns regarding environmental degradation. Whilst most of the focus is on plastic litter and marine pollution, greenhouse gas emissions of plastic over its value chains are also of interest and non-trivial at the global scale. To quantify the global warming potential of the local plastics industry, a lifecycle-based carbon footprint is presented encompassing activities such as resource extraction, polymer production and conversion, recycling, and disposal stages. The South African plastics sector is estimated to have emitted 15.8 Mt CO2eq in 2015, with the granulate production stage bearing the highest environmental load. The consumption of fossil fuel based electricity and the burning of plastic waste also contribute notably to the overall emissions. Additionally, the recycling process in 2015 saved approximately 1.4 Mt of greenhouse gas emissions.
Food Waste Biomass‐Derived Hydrochar by Hydrothermal Carbonization for Solid Biofuel Production
Energy catalyzes economic development, with research into energy technologies essential for identifying alternatives that could mitigate against the reliance on fossil energy and its aggravating environmental impacts. This study explored the conversion of food waste (FW) biomass into hydrochar achieved via hydrothermal carbonization (HTC) technology. The research focused on evaluating the merits and demerits of using mixed FW feedstock, especially rice, potatoes, vegetables, and/or animal byproducts such as meat and fish at varying water‐to‐biomass ratios and through the implementation of water recirculation in the HTC process. This approach aimed to decrease water consumption while assessing its impact on the fuel characteristics of the resultant hydrochar. The hydrochar produced demonstrated an enhanced carbon content, which is conducive to combustion, while also exhibiting improved fuel properties such as elevated heating values, improved energy densities, and reduced volatile components. Conditions exceeding 200°C, with a reaction time of 6 h, were found to be sufficient to attain an average carbon content of above 70% and a heating value of around 30 MJ/kg. Moreover, decreasing the water‐to‐biomass ratio enabled a reduction in initial water usage by up to 50%, without significantly impairing the carbon content and fuel attributes of the hydrochar. Thermogravimetric analysis (TGA) indicated a comparatively elevated combustion temperature of 600°C for the hydrochar generated at an HTC temperature of 220°C, which corresponded with a substantial increase in the carbon content of hydrochar up to 70.65% from initial 48% in the parent biomass. Consequently, the hydrochar generated from FW under different HTC reaction conditions, including water volume reduction and recirculation, demonstrated the potential for minimal water consumption. This method represents a promising strategy for enhancing HTC as a renewable energy technology.