Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
81
result(s) for
"Hardwick, J. Marie"
Sort by:
Do Fungi Undergo Apoptosis-Like Programmed Cell Death?
2018
This question of whether fungi undergo apoptosis-like programmed cell death can be separated into two questions. One question is about applying the term “apoptosis” to fungi, and the other is a more challenging question of whether fungi have evolved mechanisms that inflict self-injury. This question of whether fungi undergo apoptosis-like programmed cell death can be separated into two questions. One question is about applying the term \"apoptosis\" to fungi, and the other is a more challenging question of whether fungi have evolved mechanisms that inflict self-injury. The answers to both questions depend on the definitions applied to “apoptosis” and “programmed cell death.” Considering how these and other cell death terms originated and are currently defined for animals, some confusion arises when the terms are applied to fungi. While it is difficult to defend the concept of fungal apoptosis, the more interesting issue is whether fungi will eventually be found to encode programmed or extemporaneous self-destructive processes, as suggested by intriguing new findings.
Journal Article
KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders
2019
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well‐characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD‐related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy‐lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure‐based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Journal Article
In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity
2015
The discovery that mammalian cells can survive late-stage apoptosis challenges the general assumption that active caspases are markers of impending death. However, tools have not been available to track healthy cells that have experienced caspase activity at any time in the past. Therefore, to determine if cells in whole animals can undergo reversal of apoptosis, known as anastasis, we developed a dual color CaspaseTracker system for
Drosophila
to identify cells with ongoing or past caspase activity. Transient exposure of healthy females to environmental stresses such as cold shock or starvation activated the CaspaseTracker coincident with caspase activity and apoptotic morphologies in multiple cell types of developing egg chambers. Importantly, when stressed flies were returned to normal conditions, morphologically healthy egg chambers and new progeny flies were labeled by the biosensor, suggesting functional recovery from apoptotic caspase activation. In striking contrast to developing egg chambers, which lack basal caspase biosensor activation under normal conditions, many adult tissues of normal healthy flies exhibit robust caspase biosensor activity in a portion of cells, including neurons. The widespread persistence of CaspaseTracker-positivity implies that healthy cells utilize active caspases for non-apoptotic physiological functions during and after normal development.
Journal Article
Whi2 is a conserved negative regulator of TORC1 in response to low amino acids
by
Hardwick, J. Marie
,
Metz, Kyle A.
,
Diny, Nicola L.
in
Amino acids
,
Amino Acids - metabolism
,
Animals
2018
Yeast WHI2 was originally identified in a genetic screen for regulators of cell cycle arrest and later suggested to function in general stress responses. However, the function of Whi2 is unknown. Whi2 has predicted structure and sequence similarity to human KCTD family proteins, which have been implicated in several cancers and are causally associated with neurological disorders but are largely uncharacterized. The identification of conserved functions between these yeast and human proteins may provide insight into disease mechanisms. We report that yeast WHI2 is a new negative regulator of TORC1 required to suppress TORC1 activity and cell growth specifically in response to low amino acids. In contrast to current opinion, WHI2 is dispensable for TORC1 inhibition in low glucose. The only widely conserved mechanism that actively suppresses both yeast and mammalian TORC1 specifically in response to low amino acids is the conserved SEACIT/GATOR1 complex that inactivates the TORC1-activating RAG-like GTPases. Unexpectedly, Whi2 acts independently and simultaneously with these established GATOR1-like Npr2-Npr3-Iml1 and RAG-like Gtr1-Gtr2 complexes, and also acts independently of the PKA pathway. Instead, Whi2 inhibits TORC1 activity through its binding partners, protein phosphatases Psr1 and Psr2, which were previously thought to only regulate amino acid levels downstream of TORC1. Furthermore, the ability to suppress TORC1 is conserved in the SKP1/BTB/POZ domain-containing, Whi2-like human protein KCTD11 but not other KCTD family members tested.
Journal Article
Whi2 signals low leucine availability to halt yeast growth and cell death
by
Teng, Xinchen
,
Sing, Cierra
,
Hardwick, J Marie
in
Adaptation, Physiological
,
Amino acids
,
Biochemistry
2018
Cells are exquisitely tuned to environmental ques. Amino acid availability is rapidly sensed, allowing cells to adjust molecular processes and implement short or long-term metabolic shifts accordingly. How levels of most individual amino acids may be sensed and subsequently signaled to inform cells of their nutrient status is largely unknown. We made the unexpected observation that small changes in the levels of specific amino acids can have a profound effect on yeast cell growth, leading to the identification of yeast Whi2 as a negative regulator of cell growth in low amino acids. Although Whi2 was originally thought to be fungi-specific, Whi2 appears to share a conserved structural domain found in a family of 25 largely uncharacterized human genes encoding the KCTD (potassium channel tetramerization domain) protein family. Insights gained from yeast Whi2 are likely to be revealing about human KCTDs, many of which have been implicated or demonstrated to cause disease when mutated. Here we report new evidence that Whi2 responds to specific amino acids in the medium, particularly low leucine levels. We also discuss the known pathways of amino acid signaling and potential points of regulation by Whi2 in nutrient signaling in yeast and mammals.
Journal Article
Controlling caspase activity in life and death
by
Arama, Eli
,
Hardwick, J. Marie
,
White, Kristin
in
Adapter proteins
,
Apoptosis
,
Biology and Life Sciences
2017
Based on a recent crystal structure analysis, K78 forms an intermolecular hydrogen bond with the Dronc residue that directly contacts Dark at the center of the CARD-CARD interface between Dronc and Dark [9]. [...]mono-ubiquitylation at lysine 78 is likely to alter or inhibit apoptosome formation and subsequent cell death. [...]Dronc catalytic activity may be required for some non-apoptotic roles of Dronc, such as the non-apoptotic caspase function required for spermatid terminal differentiation in Drosophila called individualization [3].
Journal Article
A New View of the Lethal Apoptotic Pore
2012
Cell death by apoptosis is indispensable for proper development and tissue homeostasis in all multicellular organisms, and its deregulation plays a key role in cancer and many other diseases. A crucial event in apoptosis is the formation of protein-permeable pores in the outer mitochondrial membrane that release cytochrome c and other apoptosis-promoting factors into the cytosol. Research efforts over the past two decades have established that apoptotic pores require BCL-2 family proteins, with the proapoptotic BAX-type proteins being direct effectors of pore formation. Accumulating evidence indicates that other cellular components also cooperate with BCL-2 family members to regulate the apoptotic pore. Despite this knowledge, the molecular pathway leading to apoptotic pore formation at the outer mitochondrial membrane and the precise nature of this outer membrane pore remain enigmatic. In this issue of PLOS Biology, Kushnareva and colleagues describe a novel kinetic analysis of the dynamics of BAX-dependent apoptotic pore formation recapitulated in native mitochondrial outer membranes. Their study reveals the existence of a hitherto unknown outer mitochondrial membrane factor that is critical for BAX-mediated apoptotic pore formation, and challenges the currently popular view that the apoptotic pore is a purely proteinaceous multimeric assembly of BAX proteins. It also supports the notion that membrane remodeling events are implicated in the formation of a lipid-containing apoptotic pore.
Journal Article
The mTOR Inhibitor Rapamycin Has Limited Acute Anticonvulsant Effects in Mice
by
Hardwick, J. Marie
,
Hartman, Adam L.
,
Dolce, Alison
in
3-Hydroxybutyric Acid - blood
,
Acute Disease
,
Amino acids
2012
The mammalian target of rapamycin (mTOR) pathway integrates signals from different nutrient sources, including amino acids and glucose. Compounds that inhibit mTOR kinase activity such as rapamycin and everolimus can suppress seizures in some chronic animal models and in patients with tuberous sclerosis. However, it is not known whether mTOR inhibitors exert acute anticonvulsant effects in addition to their longer term antiepileptogenic effects. To gain insights into how rapamycin suppresses seizures, we investigated the anticonvulsant activity of rapamycin using acute seizure tests in mice.
Following intraperitoneal injection of rapamycin, normal four-week-old male NIH Swiss mice were evaluated for susceptibility to a battery of acute seizure tests similar to those currently used to screen potential therapeutics by the US NIH Anticonvulsant Screening Program. To assess the short term effects of rapamycin, mice were seizure tested in ≤ 6 hours of a single dose of rapamycin, and for longer term effects of rapamycin, mice were tested after 3 or more daily doses of rapamycin.
The only seizure test where short-term rapamycin treatment protected mice was against tonic hindlimb extension in the MES threshold test, though this protection waned with longer rapamycin treatment. Longer term rapamycin treatment protected against kainic acid-induced seizure activity, but only at late times after seizure onset. Rapamycin was not protective in the 6 Hz or PTZ seizure tests after short or longer rapamycin treatment times. In contrast to other metabolism-based therapies that protect in acute seizure tests, rapamycin has limited acute anticonvulsant effects in normal mice.
The efficacy of rapamycin as an acute anticonvulsant agent may be limited. Furthermore, the combined pattern of acute seizure test results places rapamycin in a third category distinct from both fasting and the ketogenic diet, and which is more similar to drugs acting on sodium channels.
Journal Article
Cryptococcus neoformans rapidly invades the murine brain by sequential breaching of airway and endothelial tissues barriers, followed by engulfment by microglia
by
Hardwick, J. Marie
,
Coelho, Carolina
,
Camacho, Emma
in
Acquired immune deficiency syndrome
,
AIDS
,
Animal models
2024
Cryptococcal meningitis causes 10%–15% of AIDS-associated deaths globally. Still, brain-specific immunity to cryptococci is a conundrum. By employing innovative imaging, this study reveals what occurs during the first days of infection in brain and in airways. We found that titan cells predominate in upper airways and that cryptococci breach the upper airway mucosa, which implies that, at least in mice, the upper airways are a site for fungal dissemination. This would signify that mucosal immunity of the upper airway needs to be better understood. Importantly, we also show that microglia, the brain-resident macrophages, are the first responders to infection, and microglia clusters are formed surrounding cryptococci. This study opens the field to detailed molecular investigations on airway immune response, how fungus traverses the blood-brain barrier, how microglia respond to infection, and ultimately how microglia monitor the blood-brain barrier to preserve brain function.
Journal Article
Comment on “Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death”
by
Hardwick, J. Marie
,
Powers, Ted
,
Váchová, Libuše
in
Apoptosis
,
Apoptosis - immunology
,
Aspergillosis
2018
Shlezinger et al . (Reports, 8 September 2017, p. 1037) report that the common fungus Aspergillus fumigatus , a cause of aspergillosis, undergoes caspase-dependent apoptosis-like cell death triggered by lung neutrophils. However, the technologies they used do not provide reliable evidence that fungal cells die via a protease signaling cascade thwarted by a fungal caspase inhibitor homologous to human survivin.
Journal Article