Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
102 result(s) for "Hardy, Joseph L."
Sort by:
Enhancing Cognitive Abilities with Comprehensive Training: A Large, Online, Randomized, Active-Controlled Trial
A variety of studies have demonstrated gains in cognitive ability following cognitive training interventions. However, other studies have not shown such gains, and questions remain regarding the efficacy of specific cognitive training interventions. Cognitive training research often involves programs made up of just one or a few exercises, targeting limited and specific cognitive endpoints. In addition, cognitive training studies typically involve small samples that may be insufficient for reliable measurement of change. Other studies have utilized training periods that were too short to generate reliable gains in cognitive performance. The present study evaluated an online cognitive training program comprised of 49 exercises targeting a variety of cognitive capacities. The cognitive training program was compared to an active control condition in which participants completed crossword puzzles. All participants were recruited, trained, and tested online (N = 4,715 fully evaluable participants). Participants in both groups were instructed to complete one approximately 15-minute session at least 5 days per week for 10 weeks. Participants randomly assigned to the treatment group improved significantly more on the primary outcome measure, an aggregate measure of neuropsychological performance, than did the active control group (Cohen's d effect size = 0.255; 95% confidence interval = [0.198, 0.312]). Treatment participants showed greater improvements than controls on speed of processing, short-term memory, working memory, problem solving, and fluid reasoning assessments. Participants in the treatment group also showed greater improvements on self-reported measures of cognitive functioning, particularly on those items related to concentration compared to the control group (Cohen's d = 0.249; 95% confidence interval = [0.191, 0.306]). Taken together, these results indicate that a varied training program composed of a number of tasks targeted to different cognitive functions can show transfer to a wide range of untrained measures of cognitive performance. ClinicalTrials.gov NCT-02367898.
The Influence of Perceptual Training on Working Memory in Older Adults
Normal aging is associated with a degradation of perceptual abilities and a decline in higher-level cognitive functions, notably working memory. To remediate age-related deficits, cognitive training programs are increasingly being developed. However, it is not yet definitively established if, and by what mechanisms, training ameliorates effects of cognitive aging. Furthermore, a major factor impeding the success of training programs is a frequent failure of training to transfer benefits to untrained abilities. Here, we offer the first evidence of direct transfer-of-benefits from perceptual discrimination training to working memory performance in older adults. Moreover, using electroencephalography to evaluate participants before and after training, we reveal neural evidence of functional plasticity in older adult brains, such that training-induced modifications in early visual processing during stimulus encoding predict working memory accuracy improvements. These findings demonstrate the strength of the perceptual discrimination training approach by offering clear psychophysical evidence of transfer-of-benefit and a neural mechanism underlying cognitive improvement.
Memory Enhancement in Healthy Older Adults Using a Brain Plasticity-Based Training Program: A Randomized, Controlled Study
Normal aging is associated with progressive functional losses in perception, cognition, and memory. Although the root causes of age-related cognitive decline are incompletely understood, psychophysical and neuropsychological evidence suggests that a significant contribution stems from poorer signal-to-noise conditions and down-regulated neuromodulatory system function in older brains. Because the brain retains a lifelong capacity for plasticity and adaptive reorganization, dimensions of negative reorganization should be at least partially reversible through the use of an appropriately designed training program. We report here results from such a training program targeting age-related cognitive decline. Data from a randomized, controlled trial using standardized measures of neuropsychological function as outcomes are presented. Significant improvements in assessments directly related to the training tasks and significant generalization of improvements to nonrelated standardized neuropsychological measures of memory (effect size of 0.25) were documented in the group using the training program. Memory enhancement appeared to be sustained after a 3-month no-contact follow-up period. Matched active control and no-contact control groups showed no significant change in memory function after training or at the 3-month follow-up. This study demonstrates that intensive, plasticity-engaging training can result in an enhancement of cognitive function in normal mature adults.
The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging
Making new breakthroughs in understanding the processes underlying human cognition may depend on the availability of very large datasets that have not historically existed in psychology and neuroscience. Lumosity is a web-based cognitive training platform that has grown to include over 600 million cognitive training task results from over 35 million individuals, comprising the largest existing dataset of human cognitive performance. As part of the Human Cognition Project, Lumosity's collaborative research program to understand the human mind, Lumos Labs researchers and external research collaborators have begun to explore this dataset in order uncover novel insights about the correlates of cognitive performance. This paper presents two preliminary demonstrations of some of the kinds of questions that can be examined with the dataset. The first example focuses on replicating known findings relating lifestyle factors to baseline cognitive performance in a demographically diverse, healthy population at a much larger scale than has previously been available. The second example examines a question that would likely be very difficult to study in laboratory-based and existing online experimental research approaches at a large scale: specifically, how learning ability for different types of cognitive tasks changes with age. We hope that these examples will provoke the imagination of researchers who are interested in collaborating to answer fundamental questions about human cognitive performance.
Piecewise power laws in individual learning curves
The notion that human learning follows a smooth power law (PL) of diminishing gains is well-established in psychology. This characteristic is observed when multiple curves are averaged, potentially masking more complex dynamics underpinning the curves of individual learners. Here, we analyzed 25,280 individual learning curves, each comprising 500 measurements of cognitive performance taken from four cognitive tasks. A piecewise PL (PPL) model explained the individual learning curves significantly better than a single PL, controlling for model complexity. The PPL model allows for multiple PLs connected at different points in the learning process. We also explored the transition dynamics between PL curve component pieces. Performance in later pieces typically surpassed that in earlier pieces, after a brief drop in performance at the transition point. The transition rate was negatively associated with age, even after controlling for overall performance. Our results suggest at least two processes at work in individual learning curves: locally, a gradual, smooth improvement, with diminishing gains within a specific strategy, which is modeled well as a PL; and globally, a discrete sequence of strategy shifts, in which each strategy is better in the long term than the ones preceding it. The piecewise extension of the classic PL of practice has implications for both individual skill acquisition and theories of learning.
Inducing selflessness through a numadelic virtual reality experience: a preliminary study
Recently, there has been growing scientific interest in studying states of selflessness, where there is no sense of self as the immediate subject of experience. Preliminary findings suggest that this state is associated with increased positive emotions and a sense of connection with the world and all living beings. Given its potential benefits, various practices have been developed to induce or cultivate selflessness, including meditation and psychedelic drugs. However, there is a pressing need to explore alternative cost-effective and non-pharmacological approaches to overcome the limitations of these methods. In this regard, Virtual Reality (VR) presents a promising method capable of creating experiences that may be risky, costly, or otherwise unfeasible in the real world. The present study aims to examine whether a multi-person numadelic VR experience could induce a state of selflessness and to investigate its impact on affect, mystical experiences, and peak experiences. A total of 56 volunteers participated in a VR session and completed several self-report questionnaires before, immediately after, and one week following the experience. Preliminary findings suggest that a single multi-person VR experience can engender selflessness and enhance interpersonal connectedness. Additionally, it increases low-arousal positive affect and warmth, and generates mystical and peak experiences in a notable subset of participants. The experience is also widely accepted, with participants reporting few adverse effects. By providing a new research method for accessing selflessness, this study paves the way for further exploration in this field and contributes to a deeper understanding of this complex psychological experience.
Color Naming, Lens Aging, and Grue: What the Optics of the Aging Eye Can Teach Us about Color Language
Many languages without separate terms for green and blue are or were spoken in locations receiving above-average exposure to ultraviolet-B (UV-B) radiation. It has been proposed that this correlation is caused by premature lens aging. This conclusion was supported by an experiment in which younger observers used the term \"blue\" less often when they described simulated paint chips filtered through the equivalent of an older observer's lens--removing much short-wavelength light--than when they described the unfiltered versions of the same paint chips. Some stimuli that were called \"blue\" without simulated aging were called \"green\" when filtered. However, in the experiment reported here, we found that the proportion of \"blue\" color-name responses did not differ between younger subjects and older observers with known ocular media optical densities. Color naming for stimuli that were nominally green, blue-green, or blue was virtually identical for older and younger observers who viewed the same (unfiltered) stimuli. Our results are inconsistent with the lens-brunescence hypothesis.
Enhancing Cognitive Abilities with Comprehensive Training: A Large, Online, Randomized, Active-Controlled Trial: e0134467
Background A variety of studies have demonstrated gains in cognitive ability following cognitive training interventions. However, other studies have not shown such gains, and questions remain regarding the efficacy of specific cognitive training interventions. Cognitive training research often involves programs made up of just one or a few exercises, targeting limited and specific cognitive endpoints. In addition, cognitive training studies typically involve small samples that may be insufficient for reliable measurement of change. Other studies have utilized training periods that were too short to generate reliable gains in cognitive performance. Methods The present study evaluated an online cognitive training program comprised of 49 exercises targeting a variety of cognitive capacities. The cognitive training program was compared to an active control condition in which participants completed crossword puzzles. All participants were recruited, trained, and tested online (N = 4,715 fully evaluable participants). Participants in both groups were instructed to complete one approximately 15-minute session at least 5 days per week for 10 weeks. Results Participants randomly assigned to the treatment group improved significantly more on the primary outcome measure, an aggregate measure of neuropsychological performance, than did the active control group (Cohen's d effect size = 0.255; 95% confidence interval = [0.198, 0.312]). Treatment participants showed greater improvements than controls on speed of processing, short-term memory, working memory, problem solving, and fluid reasoning assessments. Participants in the treatment group also showed greater improvements on self-reported measures of cognitive functioning, particularly on those items related to concentration compared to the control group (Cohen's d = 0.249; 95% confidence interval = [0.191, 0.306]). Conclusion Taken together, these results indicate that a varied training program composed of a number of tasks targeted to different cognitive functions can show transfer to a wide range of untrained measures of cognitive performance. Trial Registration ClinicalTrials.gov NCT-02367898
Research Article: Color Naming, Lens Aging, and Grue. What the Optics of the Aging Eye Can Teach Us About Color Language
Many languages without separate terms for green and blue are or were spoken in locations receiving above-average exposure to ultraviolet-B (UV-B) radiation. It has been proposed that this correlation is caused by premature lens aging. This conclusion was supported by an experiment in which younger observers used the term 'blue' less often when they described simulated paint chips filtered through the equivalent of an older observer's lens-removing much short-wavelength light-than when they described the unfiltered versions of the same paint chips. Some stimuli that were called 'blue' without simulated aging were called 'green' when filtered. However, in the experiment reported here, we found that the proportion of 'blue' color-name responses did not differ between younger subjects and older observers with known ocular media optical densities. Color naming for stimuli that were nominally green, blue-green, or blue was virtually identical for older and younger observers who viewed the same (unfiltered) stimuli. Our results are inconsistent with the lens-brunescence hypothesis.