Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Hardy, Sarah Mincks"
Sort by:
The dynamics of biogeographic ranges in the deep sea
Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.
Autumn distribution of Bristol Bay red king crab using fishery logbooks
Spatial distributions of fished species must be well characterized to avoid local depletions, identify critical habitat, and predict and mitigate interactions with other fisheries. The Bristol Bay red king crab (Paralithodes camtschaticus) fishery is one of the largest crab fisheries in Alaska. Summer crab distributions have been well documented by decades of bottom trawl surveys. However, crab movement and distribution are poorly understood outside the summer survey period, which creates several management challenges. One important component of fishery management is the existence of no-trawl zones, which are intended to protect crab from bottom trawl fisheries. However, it is difficult to evaluate the placement of no-trawl zones, because most crab bycatch occurs in trawl fisheries during winter when crab distributions are unknown. Daily fishing logs, kept by skippers in the red king crab fleet since 2005, contain detailed information on the spatial distribution of catch and effort of legal sized male crab during the autumn crab fishery. However, data contained in these hand-written logbooks have not been readily accessible. We digitized daily fishing logs from 2005 to 2016 and used spatial information on catch and effort to infer geographic distributions of legal sized male king crab during the crab fishing season. Changes in distribution were tracked across this 12-yr period and comparisons were made between warm and cold temperature regimes. In warm years (2005, 2014-2016), crab aggregated in the center of Bristol Bay, Alaska, while in cold years (2007-2013) they were closer to the Alaska Peninsula. The majority of crab were caught in no-trawl areas (63.4% on average), but variations occurred among years and with temperature regime (40.0-86.8% in no-trawl zones). As temperatures continue to shift in the Bering Sea, it will be important to continue monitoring crab distributions outside the summer survey period.
Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools
The last decade has seen an increase in the frequency and breadth of application of molecular tools, many of which are beginning to shed light on long-standing questions in biogeography and evolutionary history of marine fauna. We explore new developments with respect to Arctic marine invertebrates, focusing on molecular taxonomy and phylogeography—two areas that have seen the most progress in the time-frame of the Census of Marine Life. International efforts to generate genetic ‘barcodes’ have yielded new taxonomic insights and applications ranging from diet analysis to identification of larval forms. Increasing availability of genetic data in public databases is also facilitating exploration of large-scale patterns in Arctic marine populations. We present new case-studies in meta-population analysis of barcode data from polychaetes and echinoderms that demonstrate such phylogeographic applications. Emerging patterns from ours and other published studies include influences of a complex climatic and glacial history on genetic diversity and evolution in the Arctic, and contrasting patterns of both high gene flow and persistent biogeographic boundaries in contemporary populations.
Editorial: Extreme Benthic Communities in the Age of Global Change
[...]the future of the benthos will depend on how organisms, species, populations and communities will respond. Benthic communities are especially useful in long-term comparative investigations such as studying the effects of climate change and other pressures because most of their species are sessile or have low mobility, can be long-lived, and integrate the effects of environmental change over time. Åström et al. provide a thorough review of cold seeps benthic ecology in the Arctic, suggesting that chemosynthetic systems, operating on different spatial and temporal cycles than the surficial photosynthetic counterpart, may act as spatio-temporal bridges or refugia for benthic communities subject to climate change such as warming, and subsequent mismatches in phenologies and energy demands vs. surface supply (bentho-pelagic coupling). Apart from the phenomena associated with climate change, marine benthic ecosystems are exposed to human activities and disturbances, including several types of pollution with impacts on a global scale.
Larval Biology and Environmental Tolerances of the King Crab Parasite Briarosaccus regalis
Rhizocephalan barnacles in the genus Briarosaccus parasitize and castrate king crab hosts, thereby preventing host reproduction and potentially altering host abundance. To better understand how environmental factors in Alaska may influence Briarosaccus prevalence, we studied the effects of temperature and salinity on the larvae of Briarosaccus regalis (previously Briarosaccus callosus). Nauplius larvae were reared at 7 temperatures (2 to 16 C) and 8 salinities (19 to 40) to determine larval survival and development rates. Maximum survival occurred from 4 to 12 C and at salinities between 25 and 34. In the Gulf of Alaska and Bering Sea, ocean temperatures and salinities are often within these ranges; thus current conditions appear favorable for high B. regalis larval survival. In addition, temperature was negatively correlated with larval development time; thus warmer waters can reduce the time larvae are exposed to the dangers of the planktonic environment. Since only female B. regalis larvae can infect crabs, we investigated the sex ratios of B. regalis broods at different temperatures and how size and morphological traits can be used to sex cyprid larvae. Larval rearing temperature did not affect brood sex ratio (F0.947, P = 0.369), but sex ratio varied among broods (F221.9; P < 0.001). Male larvae (424.5 ± 24.3 μm [mean ± 1 SD]) were significantly larger than female larvae (387.6 ± 22.7 μm [mean ± 1 SD]; F1,221.4; P < 0.001), consistent with other rhizocephalan cyprids, but sizes overlapped between the sexes such that morphological traits were also necessary for determining sex. Overall, this study provides new information on the larval biology, larval morphology, and environmental tolerances of B. regalis, an important king crab parasite.