Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
327 result(s) for "Harrington, Patrick"
Sort by:
Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen’s epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Engineered dissipation for quantum information science
Quantum information processing relies on the precise control of non-classical states in the presence of many uncontrolled environmental degrees of freedom. The interactions between the relevant degrees of freedom and the environment are often viewed as detrimental, as they dissipate energy and decohere quantum states. Nonetheless, when controlled, dissipation is an essential tool for manipulating quantum information: dissipation engineering enables quantum measurement, quantum-state preparation and quantum-state stabilization. The advances in quantum technologies, marked by improvements of characteristic coherence times and extensible architectures for quantum control, have coincided with the development of such dissipation engineering tools that interface quantum and classical degrees of freedom. This Review presents dissipation as a fundamental aspect of the measurement and control of quantum devices, and highlights the role of dissipation engineering in quantum error correction and quantum simulation.Controlled dissipation can be used to protect quantum information, control dynamics and enforce constraints. This Review explains the basic principles and overviews the applications of dissipation engineering to quantum error correction, quantum sensing and quantum simulation.
Biomarkers for progressive multifocal leukoencephalopathy: emerging data for use of JC virus DNA copy number in clinical trials
Progressive multifocal leukoencephalopathy is a rare but devastating demyelinating disease caused by the JC virus (JCV), for which no therapeutics are approved. To make progress towards addressing this unmet medical need, innovations in clinical trial design are needed. Quantitative JCV DNA in CSF has the potential to serve as a valuable biomarker of progressive multifocal leukoencephalopathy disease and treatment response in clinical trials to expedite therapeutic development, as do neuroimaging and other fluid biomarkers such as neurofilament light chain. Specifically, JCV DNA in CSF could be used in clinical trials as an entry criterion, stratification factor, or predictor of clinical outcomes. Insights from the investigation of candidate biomarkers for progressive multifocal leukoencephalopathy might inform approaches to biomarker development for other rare diseases.
Probing entanglement in a 2D hard-core Bose–Hubbard lattice
Entanglement and its propagation are central to understanding many physical properties of quantum systems 1 – 3 . Notably, within closed quantum many-body systems, entanglement is believed to yield emergent thermodynamic behaviour 4 – 7 . However, a universal understanding remains challenging owing to the non-integrability and computational intractability of most large-scale quantum systems. Quantum hardware platforms provide a means to study the formation and scaling of entanglement in interacting many-body systems 8 – 14 . Here we use a controllable 4 × 4 array of superconducting qubits to emulate a 2D hard-core Bose–Hubbard (HCBH) lattice. We generate superposition states by simultaneously driving all lattice sites and extract correlation lengths and entanglement entropy across its many-body energy spectrum. We observe volume-law entanglement scaling for states at the centre of the spectrum and a crossover to the onset of area-law scaling near its edges. By emulating a 2D hard-core Bose–Hubbard lattice using a controllable 4 × 4 array of superconducting qubits, volume-law entanglement scaling as well as area-law scaling at different locations in the energy spectrum are observed.
Synchronous detection of cosmic rays and correlated errors in superconducting qubit arrays
Quantum information processing at scale will require sufficiently stable and long-lived qubits, likely enabled by error-correction codes. Several recent superconducting-qubit experiments, however, reported observing intermittent spatiotemporally correlated errors that would be problematic for conventional codes, with ionizing radiation being a likely cause. Here, we directly measured the cosmic-ray contribution to spatiotemporally correlated qubit errors. We accomplished this by synchronously monitoring cosmic-ray detectors and qubit energy-relaxation dynamics of 10 transmon qubits distributed across a 5 × 5 × 0.35  mm 3 silicon chip. Cosmic rays caused correlated errors at a rate of 1 / 592 + 48 − 41 s , accounting for 17.1 ± 1.3% of all such events. Our qubits responded to essentially all of the cosmic rays and their secondary particles incident on the chip, consistent with the independently measured arrival flux. Moreover, we observed that the landscape of the superconducting gap in proximity to the Josephson junctions dramatically impacts the qubit response to cosmic rays. Given the practical difficulties associated with shielding cosmic rays, our results indicate the importance of radiation hardening—for example, superconducting gap engineering—to the realization of robust quantum error correction. Ionizing radiation from cosmic rays has been identified as a source of correlated errors in superconducting qubits, but a direct demonstration of this link has been lacking. Here the authors measure the coincidence between correlated errors and incident cosmic rays in a chip with 10 transmon qubits.
Quantum transport and localization in 1d and 2d tight-binding lattices
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian. The ideal experimental emulation of such a model utilizes simultaneous, high-fidelity control and readout of each lattice site in a highly coherent quantum system. Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable 3 × 3 array of superconducting qubits. We probe the propagation of entanglement throughout the lattice and extract the degree of localization in the Anderson and Wannier-Stark regimes in the presence of site-tunable disorder strengths and gradients. Our results are in quantitative agreement with numerical simulations and match theoretical predictions based on the tight-binding model. The demonstrated level of experimental control and accuracy in extracting the system observables of interest will enable the exploration of larger, interacting lattices where numerical simulations become intractable.
Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias
Early identification of atrial fibrillation (AF) can reduce the risk of stroke, heart failure, and other serious cardiovascular outcomes. However, paroxysmal AF may not be detected even after a two-week continuous monitoring period. We developed a model to quantify the risk of near-term AF in a two-week period, based on AF-free ECG intervals of up to 24 h from 459,889 patch-based ambulatory single-lead ECG (modified lead II) recordings of up to 14 days. A deep learning model was used to integrate ECG morphology data with demographic and heart rhythm features toward AF prediction. Observing a 1-day AF-free ECG recording, the model with deep learning features produced the most accurate prediction of near-term AF with an area under the curve AUC = 0.80 (95% confidence interval, CI = 0.79–0.81), significantly improving discrimination compared to demographic metrics alone (AUC 0.67; CI = 0.66–0.68). Our model was able to predict incident AF over a two-week time frame with high discrimination, based on AF-free single-lead ECG recordings of various lengths. Application of the model may enable a digital strategy for improving diagnostic capture of AF by risk stratifying individuals with AF-negative ambulatory monitoring for prolonged or recurrent monitoring, potentially leading to more rapid initiation of treatment.
Assessing a drug for an eradicated human disease: US Food and Drug Administration review of tecovirimat for the treatment of smallpox
The development and ultimate approval of tecovirimat for the antiviral treatment of smallpox, a disease that has been eradicated from the world for nearly 40 years, required a unique regulatory approach based on the US Food and Drug Administration's Animal Rule. We summarise the regulatory pathway and describe the challenges involved.
Compartmentalized Human Immunodeficiency Virus Type 1 Originates from Long-Lived Cells in Some Subjects with HIV-1–Associated Dementia
Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1-associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1-associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t(1/2) mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t(1/2) range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4(+) T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD.
Polarization from a spinning star
Although predicted 50 years ago, the polarization of light from a rotationally distorted stellar atmosphere has only recently been detected, thanks to polarimetry measurements with precision at the parts-per-million level.