Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Hartini, Nina"
Sort by:
Microencapsulation of Curcumin in Crosslinked Jelly Fig Pectin Using Vacuum Spray Drying Technique for Effective Drug Delivery
Microencapsulation of curcumin in jelly fig pectin was performed by the vacuum spray drying (VSD) technique. The VSD was advanced with a low inlet temperature of 80–90 °C and low pressure of 0.01 mPa. By the in situ cross-linking with multivalent calcium ions, jelly fig pectin produced stable curcumin encapsulated microparticles. The physiochemical characteristics of microparticles were thoroughly investigated. The results revealed that 0.75 w/w% of jelly fig pectin and inlet temperature of 90 °C could be feasible for obtaining curcumin microparticles. The VSD technique showed the best encapsulation efficiency and yield and loading efficiency was up to 91.56 ± 0.80%, 70.02 ± 1.96%, and 5.45 ± 0.14%, respectively. The curcumin was readily released into simulated gastrointestinal fluid with 95.34 ± 0.78% cumulative release in 24 h. The antioxidant activity was stable after being stored for six months and stored as a solution for seven days at room temperature before analysis. Hence, the VSD technique could be applicable for the microencapsulation of bioactive compounds such as curcumin to protect and use in the food/pharmaceutical industry.