Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
335
result(s) for
"Hartz, M"
Sort by:
Brain arteriolosclerosis
by
Schmitt, Frederick A
,
Jicha, Gregory A
,
Schneider, Julie A
in
Aging
,
Alzheimer's disease
,
Amyloid
2021
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer’s disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Journal Article
N-Acetylcysteine Attenuates Aβ-Mediated Oxidative Stress, Blood–Brain Barrier Leakage, and Renal Dysfunction in 5xFAD Mice
by
Nehra, Geetika
,
Vaddhanaphuti, Chutima S.
,
Hartz, Anika M. S.
in
Acetylcysteine
,
Acetylcysteine - pharmacology
,
Advertising executives
2025
Alzheimer’s disease (AD) is characterized by amyloid-beta (Aβ) pathology and is closely linked to oxidative stress, which contributes to blood–brain barrier leakage, renal dysfunction, and cognitive decline. We investigated the effects of N-acetyl cysteine (NAC), an FDA-approved antioxidant, on oxidative stress, brain Aβ levels, barrier leakage, renal function, and cognition in 5xFAD mice. Eight-week-old 5xFAD mice were fed a rodent diet supplemented with 600 mg/kgDiet NAC for 4 weeks; wild-type (WT) mice and control 5xFAD mice were fed a regular rodent diet. We detected elevated brain and renal 4-hydroxynonenal(4-HNE) levels, reduced creatinine clearance, and increased plasma S100β levels in untreated 5xFAD mice compared to WT controls. Untreated 5xFAD mice also had higher capillary leakage, reduced P-gp activity, and impaired cognition compared to WT. NAC treatment of 5xFAD mice reduced brain Aβ40 levels, normalized 4-HNE levels to control levels, improved creatinine clearance, decreased capillary leakage, and lowered S100β plasma levels. NAC improved cognitive performance in 5xFAD mice, as shown by Y-maze. Our findings indicate that Aβ-induced oxidative stress contributes to barrier dysfunction, renal impairment, and cognitive deficits in 5xFAD mice. Notably, NAC treatment mitigates these effects, suggesting its potential as an adjunct therapy for AD and other Aβ-related pathologies by reducing oxidative stress.
Journal Article
A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice
by
Wolf, Andrea
,
Hartz, Anika M. S.
,
Bauer, Björn
in
Aging
,
Alzheimer's disease
,
Amyloid beta-protein
2016
Transgenic Tg2576 mice overexpressing human amyloid precursor protein (hAPP) are a widely used Alzheimer's disease (AD) mouse model to evaluate treatment effects on amyloid beta (Aβ) pathology and cognition. Tg2576 mice on a B6;SJL background strain carry a recessive rd1 mutation that leads to early retinal degeneration and visual impairment in homozygous carriers. This can impair performance in behavioral tests that rely on visual cues, and thus, affect study results. Therefore, B6;SJL/Tg2576 mice were systematically backcrossed with 129S6/SvEvTac mice resulting in 129S6/Tg2576 mice that lack the rd1 mutation. 129S6/Tg2576 mice do not develop retinal degeneration but still show Aβ accumulation in the brain that is comparable to the original B6;SJL/Tg2576 mouse. However, comprehensive studies on cognitive decline in 129S6/Tg2576 mice are limited. In this study, we used two dementia mouse models on a 129S6 background--scopolamine-treated 129S6/SvEvTac mice (3-5 month-old) and transgenic 129S6/Tg2576 mice (11-13 month-old)-to establish a behavioral test battery for assessing learning and memory. The test battery consisted of five tests to evaluate different aspects of cognitive impairment: a Y-Maze forced alternation task, a novel object recognition test, the Morris water maze, the radial arm water maze, and a Y-maze spontaneous alternation task. We first established this behavioral test battery with the scopolamine-induced dementia model using 129S6/SvEvTac mice and then evaluated 129S6/Tg2576 mice using the same testing protocol. Both models showed distinctive patterns of cognitive impairment. Together, the non-invasive behavioral test battery presented here allows detecting cognitive impairment in scopolamine-treated 129S6/SvEvTac mice and in transgenic 129S6/Tg2576 mice. Due to the modular nature of this test battery, more behavioral tests, e.g. invasive assays to gain additional cognitive information, can easily be added.
Journal Article
Protecting P-glycoprotein at the blood–brain barrier from degradation in an Alzheimer’s disease mouse model
by
Ding, Yujie
,
Baldeshwiler, Andrea
,
Hartz, Anika M. S.
in
Advertising executives
,
Alzheimer Disease - metabolism
,
Alzheimer's disease
2021
Background
Failure to clear Aβ from the brain is partly responsible for Aβ brain accumulation in Alzheimer’s disease (AD). A critical protein for clearing Aβ across the blood-brain barrier is the efflux transporter P-glycoprotein (P-gp). In AD, P-gp levels are reduced, which contributes to impaired Aβ brain clearance. However, the mechanism responsible for decreased P-gp levels is poorly understood and there are no strategies available to protect P-gp. We previously demonstrated in isolated brain capillaries
ex vivo
that human Aβ40 (hAβ40) triggers P-gp degradation by activating the ubiquitin-proteasome pathway. In this pathway, hAβ40 initiates P-gp ubiquitination, leading to internalization and proteasomal degradation of P-gp, which then results in decreased P-gp protein expression and transport activity levels. Here, we extend this line of research and present results from an
in vivo
study using a transgenic mouse model of AD (human amyloid precursor protein (hAPP)-overexpressing mice; Tg2576).
Methods
In our study, hAPP mice were treated with vehicle, nocodazole (NCZ, microtubule inhibitor to block P-gp internalization), or a combination of NCZ and the P-gp inhibitor cyclosporin A (CSA). We determined P-gp protein expression and transport activity levels in isolated mouse brain capillaries and Aβ levels in plasma and brain tissue.
Results
Treating hAPP mice with 5 mg/kg NCZ for 14 days increased P-gp levels to levels found in WT mice. Consistent with this, P-gp-mediated hAβ42 transport in brain capillaries was increased in NCZ-treated hAPP mice compared to untreated hAPP mice. Importantly, NCZ treatment significantly lowered hAβ40 and hAβ42 brain levels in hAPP mice, whereas hAβ40 and hAβ42 levels in plasma remained unchanged.
Conclusions
These findings provide in vivo evidence that microtubule inhibition maintains P-gp protein expression and transport activity levels, which in turn helps to lower hAβ brain levels in hAPP mice. Thus, protecting P-gp at the blood-brain barrier may provide a novel therapeutic strategy for AD and other Aβ-based pathologies.
Journal Article
Proteasome inhibition protects blood–brain barrier P-glycoprotein and lowers Aβ brain levels in an Alzheimer’s disease model
by
Hartz, Anika M. S.
,
Zhong, Yu
,
Vulin, Milica
in
Alzheimer Disease - drug therapy
,
Alzheimer Disease - metabolism
,
Alzheimer's disease
2023
Background
Loss of P-glycoprotein (P-gp) at the blood–brain barrier contributes to amyloid-β (Aβ) brain accumulation in Alzheimer’s disease (AD). Using transgenic human amyloid precursor protein (hAPP)-overexpressing mice (Tg2576), we previously showed that Aβ triggers P-gp loss by activating the ubiquitin–proteasome pathway, which leads to P-gp degradation. Furthermore, we showed that inhibiting the ubiquitin-activating enzyme (E1) prevents P-gp loss and lowers Aβ accumulation in the brain of hAPP mice. Based on these data, we hypothesized that repurposing the FDA-approved proteasome inhibitor, bortezomib (Velcade
®
; BTZ), protects blood–brain barrier P-gp from degradation in hAPP mice in vivo.
Methods
We treated hAPP mice with the proteasome inhibitor BTZ or a combination of BTZ with the P-gp inhibitor cyclosporin A (CSA) for 2 weeks. Vehicle-treated wild-type (WT) mice were used as a reference for normal P-gp protein expression and transport activity. In addition, we used the opioid receptor agonist loperamide as a P-gp substrate in tail flick assays to indirectly assess P-gp transport activity at the blood–brain barrier in vivo. We also determined P-gp protein expression by Western blotting, measured P-gp transport activity levels in isolated brain capillaries with live cell confocal imaging and assessed Aβ plasma and brain levels with ELISA.
Results
We found that 2-week BTZ treatment of hAPP mice restored P-gp protein expression and transport activity in brain capillaries to levels found in WT mice. We also observed that hAPP mice displayed significant loperamide-induced central antinociception compared to WT mice indicating impaired P-gp transport activity at the blood–brain barrier of hAPP mice in vivo. Furthermore, BTZ treatment prevented loperamide-induced antinociception suggesting BTZ protected P-gp loss in hAPP mice. Further, BTZ-treated hAPP mice had lower Aβ40 and Aβ42 brain levels compared to vehicle-treated hAPP mice.
Conclusions
Our data indicate that BTZ protects P-gp from proteasomal degradation in hAPP mice, which helps to reduce Aβ brain levels. Our data suggest that the proteasome system could be exploited for a novel therapeutic strategy in AD, particularly since increasing Aβ transport across the blood–brain barrier may prove an effective treatment for patients.
Journal Article
Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome
by
Hoffman, Jared D.
,
Hartz, Anika M. S.
,
Chlipala, George
in
Aging
,
Alzheimer's disease
,
Animal cognition
2017
Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer's disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5-6 months of age) and compared those to old mice (18-20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased
/
ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the mechanisms underlying the shift from normal aging to pathological processes in the etiology of AD.
Journal Article
Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models
by
Rodgers, Louis T.
,
Hartz, Anika M. S.
,
Villano, John L.
in
Brain cancer
,
Brain tumors
,
Cancer
2024
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment—surgery, radiation, and chemotherapy—on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Journal Article
Association between recent overdose and chronic pain among individuals in treatment for opioid use disorder
by
Cavazos-Rehg, Patricia
,
Mintz, Carrie M.
,
Hartz, Sarah M.
in
Asymptomatic
,
Certification
,
Chronic pain
2022
Chronic pain increases risk for opioid overdose among individuals with opioid use disorder. The purpose of this study is to evaluate the relationship between recent overdose and whether or not chronic pain is active. 3,577 individuals in treatment for opioid use disorder in 2017 or 2018 were surveyed regarding recent overdoses and chronic pain. Demographics from the 2017 Treatment Episode Data Set, which includes all U.S. facilities licensed or certified to provide substance use care, were used to evaluate the generalizability of the sample. χ 2 tests and logistic regression models were used to compare associations between recent overdoses and chronic pain. Specifically, active chronic pain was associated with opioid overdose among people in treatment for opioid use disorder. Individuals with active chronic pain were more likely to have had a past month opioid overdose than those with no history chronic pain (adjusted OR = 1.55, 95% CI 1.16–2.08, p = 0.0003). In contrast, individuals with prior chronic pain, but no symptoms in the past 30 days, had a risk of past month opioid overdose similar to those with no history of chronic pain (adjusted OR = 0.88, 95% CI 0.66–1.17, p = 0.38). This suggests that the incorporation of treatment for chronic pain into treatment for opioid use disorder may reduce opioid overdoses.
Journal Article
When Does Choice of Accuracy Measure Alter Imputation Accuracy Assessments?
2015
Imputation, the process of inferring genotypes for untyped variants, is used to identify and refine genetic association findings. Inaccuracies in imputed data can distort the observed association between variants and a disease. Many statistics are used to assess accuracy; some compare imputed to genotyped data and others are calculated without reference to true genotypes. Prior work has shown that the Imputation Quality Score (IQS), which is based on Cohen's kappa statistic and compares imputed genotype probabilities to true genotypes, appropriately adjusts for chance agreement; however, it is not commonly used. To identify differences in accuracy assessment, we compared IQS with concordance rate, squared correlation, and accuracy measures built into imputation programs. Genotypes from the 1000 Genomes reference populations (AFR N = 246 and EUR N = 379) were masked to match the typed single nucleotide polymorphism (SNP) coverage of several SNP arrays and were imputed with BEAGLE 3.3.2 and IMPUTE2 in regions associated with smoking behaviors. Additional masking and imputation was conducted for sequenced subjects from the Collaborative Genetic Study of Nicotine Dependence and the Genetic Study of Nicotine Dependence in African Americans (N = 1,481 African Americans and N = 1,480 European Americans). Our results offer further evidence that concordance rate inflates accuracy estimates, particularly for rare and low frequency variants. For common variants, squared correlation, BEAGLE R2, IMPUTE2 INFO, and IQS produce similar assessments of imputation accuracy. However, for rare and low frequency variants, compared to IQS, the other statistics tend to be more liberal in their assessment of accuracy. IQS is important to consider when evaluating imputation accuracy, particularly for rare and low frequency variants.
Journal Article
Fluorescence-Guided Resection of GL261 Red-FLuc and TRP-mCherry-FLuc Mouse Glioblastoma Tumors
by
Rodgers, Louis T.
,
Hartz, Anika M. S.
,
Maloney, Bryan J.
in
Albinism
,
Aminolevulinic acid
,
Animal models
2025
Background: Most preclinical studies on glioblastoma (GBM) fail to provide translational utility in the clinic. Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) improves tumor resection, disease prognosis, and, thus, patient outcomes. Given the critical role of surgery in managing recurrent GBM, it is essential to incorporate surgical elements into preclinical models to accurately reflect clinical scenarios and enhance translational success. However, existing protocols for 5-ALA-guided resection in preclinical models are limited and often lack clinical relevance. Methods: To address this gap, we developed a novel protocol for the 5-ALA-guided resection in two mouse GBM models: TRP-mCherry-FLuc and GL261 Red-FLuc. Results: The resection of TRP-mCherry-FLuc tumors significantly extended survival and mitigated weight loss compared to controls. Similarly, GL261 Red-FLuc tumor resection increased survival, reduced body weight loss, and slowed tumor progression. Conclusions: This study presents a clinically relevant protocol for 5-ALA-guided resection in preclinical GBM models, providing a platform for future research to integrate adjuvant therapies and enhance their potential translation into clinical practice.
Journal Article