Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Hasibeder, Roland"
Sort by:
Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community
2021
Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.
Legacies of past ecological disturbances are expected but challenging to demonstrate. Here the authors report a 10-year field experiment in a mountain grassland that shows ecological memory of soil microbial community and functioning in response to recurrent drought.
Journal Article
Summer drought alters carbon allocation to roots and root respiration in mountain grassland
by
Hasibeder, Roland
,
Bahn, Michael
,
Fuchslueger, Lucia
in
13C pulse labelling
,
Altitude
,
Austria
2015
Drought affects the carbon (C) source and sink activities of plant organs, with potential consequences for belowground C allocation, a key process of the terrestrial C cycle. The responses of belowground C allocation dynamics to drought are so far poorly understood. We combined experimental rain exclusion with¹³C pulse labelling in a mountain meadow to analyse the effects of summer drought on the dynamics of belowground allocation of recently assimilated C and how it is partitioned among different carbohydrate pools and root respiration. Severe soil moisture deficit decreased the ecosystem C uptake and the amounts and velocity of C allocated from shoots to roots. However, the proportion of recently assimilated C translocated belowground remained unaffected by drought. Reduced root respiration, reflecting reduced C demand under drought, was increasingly sustained by C reserves, whilst recent assimilates were preferentially allocated to root storage and an enlarged pool of osmotically active compounds. Our results indicate that under drought conditions the usage of recent photosynthates is shifted from metabolic activity to osmotic adjustment and storage compounds.
Journal Article
Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow
2014
Drought affects plants and soil microorganisms, but it is still not clear how it alters the carbon (C) transfer at the plant–microbial interface. Here, we tested direct and indirect effects of drought on soil microbes and microbial turnover of recent plant-derived C in a mountain meadow.
Microbial community composition was assessed using phospholipid fatty acids (PLFAs); the allocation of recent plant-derived C to microbial groups was analysed by pulse-labelling of canopy sections with 13CO2 and the subsequent tracing of the label into microbial PLFAs.
Microbial biomass was significantly higher in plots exposed to a severe experimental drought. In addition, drought induced a shift of the microbial community composition, mainly driven by an increase of Gram-positive bacteria. Drought reduced belowground C allocation, but not the transfer of recently plant-assimilated C to fungi, and in particular reduced tracer uptake by bacteria. This was accompanied by an increase of 13C in the extractable organic C pool during drought, which was even more pronounced after plots were mown.
We conclude that drought weakened the link between plant and bacterial, but not fungal, C turnover, and facilitated the growth of potentially slow-growing, drought-adapted soil microbes, such as Gram-positive bacteria.
Journal Article
Post-drought rewetting triggers substantial K release and shifts in leaf stoichiometry in managed and abandoned mountain grasslands
by
Van Sundert, Kevin
,
Nijs, Ivan
,
Vicca, Sara
in
Availability
,
Biomedical and Life Sciences
,
Carbon content
2020
Background and aim
When soil is rewetted after drought, typically a transient pulse of mineralization and other microbial processes occur. This “Birch effect” translates into a temporarily elevated soil carbon dioxide efflux (SCE) and may alter nutrient availability. While rewetting effects on SCE have been frequently studied, effects on soil nutrient supply have rarely been considered despite potential relevance for plant nutrition during post-drought recovery.
Methods
We investigated the magnitude of the post-drought rewetting effect on SCE, ion exchange membrane-derived soil nutrient supply rates and leaf stoichiometry in a drought experiment in the Austrian Alps. We conducted the experiment on a managed grassland (MG) and a nearby abandoned grassland (AG).
Results
Under drought, soil moisture depleted faster at MG than at AG. Upon rewetting, the SCE pulse was significantly larger at MG than at AG, whereas N, P and K supplies were more strongly stimulated at AG. A large, transient rewetting effect on soil K supply (MG: +363 ± 132%; AG: +821 ± 195%) was reflected in elevated K in leaves of
Leontodon hispidus
.
Conclusions
Rewetting can alter post-drought nutrient availability in mountain grasslands, with particularly pronounced effects on soil K supply.
Journal Article
Responses of belowground carbon allocation dynamics to extended shading in mountain grassland
2013
Carbon (C) allocation strongly influences plant and soil processes. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood.
Using in situ
13CO2 pulse labeling, we studied the effects of 1 wk of shading on the transfer of recent photoassimilates between sugars and starch of above- and belowground plant organs and to soil microbial communities of a mountain meadow.
C allocation to roots and microbial communities was rapid. Shading strongly reduced sucrose and starch concentrations in shoots, but not roots, and affected tracer dynamics in sucrose and starch of shoots, but not roots: recent C was slowly incorporated into root starch irrespective of the shading treatment. Shading reduced leaf respiration more strongly than root respiration. It caused no reduction in the amount of 13C incorporated into fungi and Gram-negative bacteria, but increased its residence time.
These findings suggest that, under interrupted C supply, belowground C allocation (as reflected by the amount of tracer allocated to root starch, soil microbial communities and belowground respiration) was maintained at the expense of aboveground C status, and that C source strength may affect the turnover of recent plant-derived C in soil microbial communities.
Journal Article
Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions
by
Lavorel, Sandra
,
Karlowsky, Stefan
,
Lange, Markus
in
13C pulse labelling
,
Bacteria
,
bacterial communities
2018
1. Mountain grasslands have recently been exposed to substantial changes in land use and climate and in the near future will likely face an increased frequency of extreme droughts. To date, how the drought responses of carbon (C) allocation, a key process in the cycle, are affected by land-use changes in mountain grassland is not known. 2. We performed an experimental summer drought on an abandoned grassland and a traditionally managed hay meadow and traced the fate of recent assimilates through the plant-soil continuum. We applied two ¹³CO₂ pulses, at peak drought and in the recovery phase shortly after rewetting. 3. Drought decreased total C uptake in both grassland types and led to a loss of above-ground carbohydrate storage pools. The below-ground C allocation to root sucrose was enhanced by brought, eapecially in the meadow, which also held larger root carbohydrate storage pools. 4. The microbial community of the abandoned grassland comprised more saprotrophic fungal and Gram(+) bacterial markers compared to the meadow. Drought increased the newly introduced AM and saprotrophic (A+S) fungi:bacteria ratio in both grassland types. At peak drought,¹³C transfer into AM and saprotrophic fungi, and Gram(-) bacteria was more strongly reduced in the meadow than in the abandoned grassland, which contrasted the patterns of the root carbohydrate pools. 5. In both grassland types, the C allocatioin largely recovered after rewetting. Slowest recovery was found for AM fungi and their ¹³C uptake. In contrast, all bacterial markers quickly recovered C uptake. In the meadow, where plant nitrate uptake was enhanced after drought, C uptake was even higher than in control plots. 6. Synthesis. Our results suggest that resistance and resilience (i.e. recovery) of plant C dynamics and plant-microbial interactions are negatively related, that is, high resistance is followed by slow recovery and vice versa. The abandoned grassland was more resistant to drought than the meadow and possibly had a stronger link to AM fungi that could have provided better access to water through the hyphal network. In contrast, meadow communities strongly reduced C allocation to storage and C transfer to microbial community in the brought phase, but in the recovery phase invested C resources in the bacterial communities to gain more nutrients for regrowth. We conclude that the management of mountain grasslands increases their resilience to drought.
Journal Article
Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event
by
Fritz, Karina
,
Bahn, Michael
,
Hasibeder, Roland
in
13C pulse labelling
,
Bacteria
,
below‐ground carbon allocation
2016
1. Drought periods are projected to become more severe and more frequent in many European regions. While effects of single strong droughts on plant and microbial carbon (C) dynamics have been studied in some detail, impacts of recurrent drought events are still little understood. 2. We tested whether the legacy of extreme experimental drought affects responses of plant and microbial C and nitrogen (N) turnover to further drought and rewetting. In a mountain grassland, we conducted a l3C pulse-chase experiment during a naturally occurring drought and rewetting event in plots previously exposed to experimental droughts and in ambient controls (AC). After labelling, we traced 13C below-ground allocation and incorporation into soil microbes using phospholipid fatty acid biomarkers. 3. Drought history (DH) had no effects on the standing shoot and fine root plant biomass. However, plants with experimental DH displayed decreased shoot N concentrations and increased fine root N concentrations relative to those in AC. During the natural drought, plants with DH assimilated and allocated less 13C below-ground; moreover, fine root respiration was reduced and not fuelled by fresh C compared to plants in AC. 4. Regardless of DH, microbial biomass remained stable during natural drought and rewetting. Although microbial communities initially differed in their composition between soils with and without DH, they responded to the natural drought and rewetting in a similar way: gram-positive bacteria increased, while fungal and gram-negative bacteria remained stable. In soils with DH, a strongly reduced uptake of recent plant-derived 13C in microbial biomarkers was observed during the natural drought, pointing to a smaller fraction of active microbes or to a microbial community that is less dependent on plant C. 5. Synthesis. Drought history can induce changes in abovevs. below-ground plant N concentrations and affect the response of plant C turnover to further droughts and rewetting by decreasing plant C uptake and below-ground allocation. DH does not affect the responses of the microbial community to further droughts and rewetting, but alters microbial functioning, particularly the turnover of recent plant-derived carbon, during and after further drought periods.
Journal Article
Land Use Alters the Drought Responses of Productivity and CO₂ Fluxes in Mountain Grassland
by
Karlowsky, Stefan
,
König, Alexander
,
Ingrisch, Johannes
in
Abandonment
,
Biomedical and Life Sciences
,
Bivariate analysis
2018
Climate extremes and land-use changes can have major impacts on the carbon cycle of ecosystems. Their combined effects have rarely been tested. We studied whether and how the abandonment of traditionally managed mountain grassland changes the resilience of carbon dynamics to drought. In an in situ common garden experiment located in a subalpine meadow in the Austrian Central Alps, we exposed intact ecosystem monoliths from a managed and an abandoned mountain grassland to an experimental early-summer drought and measured the responses of gross primary productivity, ecosystem respiration, phytomass and its components, and of leaf area index during the drought and the subsequent recovery period. Across all these parameters, the managed grassland was more strongly affected by drought and recovered faster than the abandoned grassland. A bivariate representation of resilience confirmed an inverse relationship of resistance and recovery; thus, low resistance was related to high recovery from drought and vice versa. In consequence, the overall perturbation of the carbon cycle caused by drought was larger in the managed than the abandoned grassland. The faster recovery of carbon dynamics from drought in the managed grassland was associated with a significantly higher uptake of nitrogen from soil. Furthermore, in both grasslands leaf nitrogen concentrations were enhanced after drought and likely reflected drought-induced increases in nitrogen availability. Our study shows that ongoing and future land-use changes have the potential to profoundly alter the impacts of climate extremes on grassland carbon dynamics.
Journal Article
Land Use Alters the Drought Responses of Productivity and CO.sub.2 Fluxes in Mountain Grassland
by
Karlowsky, Stefan
,
König, Alexander
,
Ingrisch, Johannes
in
Carbon cycle (Biogeochemistry)
,
Droughts
,
Ecosystems
2018
Climate extremes and land-use changes can have major impacts on the carbon cycle of ecosystems. Their combined effects have rarely been tested. We studied whether and how the abandonment of traditionally managed mountain grassland changes the resilience of carbon dynamics to drought. In an in situ common garden experiment located in a subalpine meadow in the Austrian Central Alps, we exposed intact ecosystem monoliths from a managed and an abandoned mountain grassland to an experimental early-summer drought and measured the responses of gross primary productivity, ecosystem respiration, phytomass and its components, and of leaf area index during the drought and the subsequent recovery period. Across all these parameters, the managed grassland was more strongly affected by drought and recovered faster than the abandoned grassland. A bivariate representation of resilience confirmed an inverse relationship of resistance and recovery; thus, low resistance was related to high recovery from drought and vice versa. In consequence, the overall perturbation of the carbon cycle caused by drought was larger in the managed than the abandoned grassland. The faster recovery of carbon dynamics from drought in the managed grassland was associated with a significantly higher uptake of nitrogen from soil. Furthermore, in both grasslands leaf nitrogen concentrations were enhanced after drought and likely reflected drought-induced increases in nitrogen availability. Our study shows that ongoing and future land-use changes have the potential to profoundly alter the impacts of climate extremes on grassland carbon dynamics.
Journal Article
Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites
by
Li, Xiangyi
,
Knapp, Alan K.
,
Zscheischler, Jakob
in
Annual precipitation
,
Annual variations
,
Asymmetry
2018
Field measurements of aboveground net primary productivity (ANPP) in temperate grasslands suggest that both positive and negative asymmetric responses to changes in precipitation (P) may occur. Under normal range of precipitation variability, wet years typically result in ANPP gains being larger than ANPP declines in dry years (positive asymmetry), whereas increases in ANPP are lower in magnitude in extreme wet years compared to reductions during extreme drought (negative asymmetry). Whether the current generation of ecosystem models with a coupled carbon–water system in grasslands are capable of simulating these asymmetric ANPP responses is an unresolved question. In this study, we evaluated the simulated responses of temperate grassland primary productivity to scenarios of altered precipitation with 14 ecosystem models at three sites: Shortgrass steppe (SGS), Konza Prairie (KNZ) and Stubai Valley meadow (STU), spanning a rainfall gradient from dry to moist. We found that (1) the spatial slopes derived from modeled primary productivity and precipitation across sites were steeper than the temporal slopes obtained from inter-annual variations, which was consistent with empirical data; (2) the asymmetry of the responses of modeled primary productivity under normal inter-annual precipitation variability differed among models, and the mean of the model ensemble suggested a negative asymmetry across the three sites, which was contrary to empirical evidence based on filed observations; (3) the mean sensitivity of modeled productivity to rainfall suggested greater negative response with reduced precipitation than positive response to an increased precipitation under extreme conditions at the three sites; and (4) gross primary productivity (GPP), net primary productivity (NPP), aboveground NPP (ANPP) and belowground NPP (BNPP) all showed concave-down nonlinear responses to altered precipitation in all the models, but with different curvatures and mean values. Our results indicated that most models overestimate the negative drought effects and/or underestimate the positive effects of increased precipitation on primary productivity under normal climate conditions, highlighting the need for improving eco-hydrological processes in those models in the future.
Journal Article