Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
130 result(s) for "Hassel, Jessica C"
Sort by:
Biomarkers for Clinical Benefit of Immune Checkpoint Inhibitor Treatment—A Review From the Melanoma Perspective and Beyond
Immune checkpoint inhibition (ICI) with anti-CTLA-4 and/or anti-PD-1 antibodies is standard treatment for metastatic melanoma. Anti-PD-1 (pembrolizumab, nivolumab) and anti-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) have been approved for treatment of several other advanced malignancies, including non-small-cell lung cancer (NSCLC); renal cell, and urothelial carcinoma; head and neck cancer; gastric, hepatocellular, and Merkel-cell carcinoma; and classical Hodgkin lymphoma. In some of these malignancies approval was based on the detection of biomarkers such as PD-L1 expression or high microsatellite instability. We review the current status of prognostic and predictive biomarkers used in ICI for melanoma and other malignancies. We include clinical, tissue, blood, and stool biomarkers, as well as imaging biomarkers. Several biomarkers have been studied in ICI for metastatic melanoma. In clinical practice, pre-treatment tumor burden measured by means of imaging and serum lactate dehydrogenase level is already being used to estimate the likelihood of effective ICI treatment. In peripheral blood, the number of different immune cell types, such as lymphocytes, neutrophils, and eosinophils, as well as different soluble factors, have been correlated with clinical outcome. For intra-tumoral biomarkers, expression of the PD-1 ligand PD-L1 has been found to be of some predictive value for anti-PD-1-directed therapy for NSCLC and melanoma. A high mutational load, particularly when accompanied by neoantigens, seems to facilitate immune response and correlates with patient survival for all entities treated by use of ICI. Tumor microenvironment also seems to be of major importance. Interestingly, even the gut microbiome has been found to correlate with response to ICI, most likely through immuno-stimulatory effects of distinct bacteria. New imaging biomarkers, e.g., for PET, and magnetic resonance imaging are also being investigated, and results suggest they will make early prediction of patient response possible. Several promising results are available regarding possible biomarkers for response to ICI, which need to be validated in large clinical trials. A better understanding of how ICI works will enable the development of biomarkers that can predict the response of individual patients.
Application of the long axial field-of-view PET/CT with low-dose 18FFDG in melanoma
AimThe recent introduction of long axial field-of-view (LAFOV) PET/CT scanners has yielded very promising results regarding image quality and sensitivity in oncological patients. We, herein, aim to determine an appropriate acquisition time range for the new long axial field of view Biograph Vision Quadra PET/CT (Siemens Healthcare) using low dose [18F]FDG activity in a group of melanoma patients.MethodologyForty-nine melanoma patients were enrolled in the study. All patients underwent total body PET/CT from the top of the head through the feet in two bed positions (field-of-view 106 cm) after i.v. injection of 2.0 MBq/kg [18F]FDG. The PET images of the first bed position (head to upper thigh; PET-10) were reconstructed and further split into 8-min (PET-8), 6-min (PET-6), 5-min (PET-5), 4-min (PET-4), and 2-min (PET-2) duration groups. Comparisons were performed between the different reconstructed scan times with regard to the visual evaluation of the PET/CT scans using the PET-10 images as reference and by calculating the 95%-CI for the differences between different time acquisitions. Moreover, objective evaluation of PET/CT image quality was performed based on SUV calculations of tumor lesions and background, leading to calculation of liver signal-to-noise ratio (SNR), and tumor-to-background ratio (TBR).ResultsA total of 60 scans were evaluated. Concerning visual analysis, 49/60 (81.7%) PET-10 scans were pathological, while the respective frequencies were 49/60 (81.7%) for PET-8 (95%-CI: − 0.0602–0.0602), 49/60 (81.7%) for PET-6 (95%-CI: − 0.0602–0.0602), 48/60 (80%) for PET-5 (95%-CI: − 0.0445–0.0886), 46/60 (76.7%) for PET-4 (95%-CI: − 0.0132–0.1370), and 45/60 (75%) for PET-2 (95%-CI: 0.0025–0.1593). In 18 PET-10 scans, the extent of metastatic involvement was very large, rendering the accurate calculation of [18F]FDG-avid tumor lesions very complicated. In the remaining 42 PET-10 scans, for which the exact calculation of tumor lesions was feasible, a total of 119 tumor lesions were counted, and the respective lesion detection rates for shorter acquisitions were as follows: 97.5% (116/119) for PET-8 (95%-CI: 0–1), 95.0% (113/119) for PET-6 (95%-CI: 0–1), 89.9% (107/119) for PET-5 (95%-CI: 0–2), 83.2% (99/119) for PET-4 (95%-CI: 1–2), and 73.9% (88/119) for PET-2 (95%-CI: 2–4). With regard to objective image quality evaluations, as a general trend, the reduction of acquisition time was associated with a decrease of liver SNR and a decrease of TBR, although in lesion-based analysis the change in TBR and tumor SUVmean values was non-significant up to 6 and 5 min acquisitions, respectively.ConclusionsIn melanoma, low-dose LAFOV PET/CT imaging is feasible and can reduce the total scan time from head to upper thigh up to 5 min providing comparable diagnostic data to standard lengths of acquisition. This may have significant implications for the diagnostic work-up of patients with melanoma, given the need for true whole-body imaging in this type of cancer.
Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
Monoclonal antibodies directed against cytotoxic T lymphocyte–associated antigen-4 (CTLA-4), such as ipilimumab, yield considerable clinical benefit for patients with metastatic melanoma by inhibiting immune checkpoint activity, but clinical predictors of response to these therapies remain incompletely characterized. To investigate the roles of tumor-specific neoantigens and alterations in the tumor microenvironment in the response to ipilimumab, we analyzed whole exomes from pretreatment melanoma tumor biopsies and matching germline tissue samples from 110 patients. For 40 of these patients, we also obtained and analyzed transcriptome data from the pretreatment tumor samples. Overall mutational load, neoantigen load, and expression of cytolytic markers in the immune microenvironment were significantly associated with clinical benefit. However, no recurrent neoantigen peptide sequences predicted responder patient populations. Thus, detailed integrated molecular characterization of large patient cohorts may be needed to identify robust determinants of response and resistance to immune checkpoint inhibitors.
Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial
Nivolumab, a fully human IgG4 PD-1 immune checkpoint inhibitor antibody, can result in durable responses in patients with melanoma who have progressed after ipilimumab and BRAF inhibitors. We assessed the efficacy and safety of nivolumab compared with investigator's choice of chemotherapy (ICC) as a second-line or later-line treatment in patients with advanced melanoma. In this randomised, controlled, open-label, phase 3 trial, we recruited patients at 90 sites in 14 countries. Eligible patients were 18 years or older, had unresectable or metastatic melanoma, and progressed after ipilimumab, or ipilimumab and a BRAF inhibitor if they were BRAFV 600 mutation-positive. Participating investigators randomly assigned (with an interactive voice response system) patients 2:1 to receive an intravenous infusion of nivolumab 3 mg/kg every 2 weeks or ICC (dacarbazine 1000 mg/m2 every 3 weeks or paclitaxel 175 mg/m2 combined with carboplatin area under the curve 6 every 3 weeks) until progression or unacceptable toxic effects. We stratified randomisation by BRAF mutation status, tumour expression of PD-L1, and previous best overall response to ipilimumab. We used permuted blocks (block size of six) within each stratum. Primary endpoints were the proportion of patients who had an objective response and overall survival. Treatment was given open-label, but those doing tumour assessments were masked to treatment assignment. We assessed objective responses per-protocol after 120 patients had been treated with nivolumab and had a minimum follow-up of 24 weeks, and safety in all patients who had had at least one dose of treatment. The trial is closed and this is the first interim analysis, reporting the objective response primary endpoint. This study is registered with ClinicalTrials.gov, number NCT01721746. Between Dec 21, 2012, and Jan 10, 2014, we screened 631 patients, randomly allocating 272 patients to nivolumab and 133 to ICC. Confirmed objective responses were reported in 38 (31·7%, 95% CI 23·5–40·8) of the first 120 patients in the nivolumab group versus five (10·6%, 3·5–23·1) of 47 patients in the ICC group. Grade 3–4 adverse events related to nivolumab included increased lipase (three [1%] of 268 patients), increased alanine aminotransferase, anaemia, and fatigue (two [1%] each); for ICC, these included neutropenia (14 [14%] of 102), thrombocytopenia (six [6%]), and anaemia (five [5%]). We noted grade 3–4 drug-related serious adverse events in 12 (5%) nivolumab-treated patients and nine (9%) patients in the ICC group. No treatment-related deaths occurred. Nivolumab led to a greater proportion of patients achieving an objective response and fewer toxic effects than with alternative available chemotherapy regimens for patients with advanced melanoma that has progressed after ipilimumab or ipilimumab and a BRAF inhibitor. Nivolumab represents a new treatment option with clinically meaningful durable objective responses in a population of high unmet need. Bristol-Myers Squibb.
Efficacy and safety of lifileucel, a one-time autologous tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with advanced melanoma after progression on immune checkpoint inhibitors and targeted therapies: pooled analysis of consecutive cohorts of the C-144-01 study
BackgroundPatients with advanced melanoma have limited treatment options after progression on immune checkpoint inhibitors (ICI). Lifileucel, a one-time autologous tumor-infiltrating lymphocyte (TIL) cell therapy, demonstrated an investigator-assessed objective response rate (ORR) of 36% in 66 patients who progressed after ICI and targeted therapy. Herein, we report independent review committee (IRC)-assessed outcomes of 153 patients treated with lifileucel in a large multicenter Phase 2 cell therapy trial in melanoma.MethodsEligible patients had advanced melanoma that progressed after ICI and targeted therapy, where appropriate. Melanoma lesions were resected (resected tumor diameter ≥1.5 cm) and shipped to a central good manufacturing practice facility for 22-day lifileucel manufacturing. Patients received a non-myeloablative lymphodepletion regimen, a single lifileucel infusion, and up to six doses of high-dose interleukin-2. The primary endpoint was IRC-assessed ORR (Response Evaluation Criteria in Solid Tumors V.1.1).ResultsThe Full Analysis Set consisted of 153 patients treated with lifileucel, including longer-term follow-up on the 66 patients previously reported. Patients had received a median of 3.0 lines of prior therapy (81.7% received both anti-programmed cell death protein 1 and anti-cytotoxic lymphocyte-associated protein 4) and had high disease burden at baseline (median target lesion sum of diameters (SOD): 97.8 mm; lactate dehydrogenase (LDH) >upper limit of normal: 54.2%). ORR was 31.4% (95% CI: 24.1% to 39.4%), with 8 complete responses and 40 partial responses. Median duration of response was not reached at a median study follow-up of 27.6 months, with 41.7% of the responses maintained for ≥18 months. Median overall survival and progression-free survival were 13.9 and 4.1 months, respectively. Multivariable analyses adjusted for Eastern Cooperative Oncology Group performance status demonstrated that elevated LDH and target lesion SOD >median were independently correlated with ORR (p=0.008); patients with normal LDH and SOD
The role of tissue-resident memory T cells as mediators for response and toxicity in immunotherapy-treated melanoma—two sides of the same coin?
Tissue-resident memory T cells (T RM cells) have become an interesting subject of study for antitumor immunity in melanoma and other solid tumors. In the initial phases of antitumor immunity, they maintain an immune equilibrium and protect against challenges with tumor cells and the formation of primary melanomas. In metastatic settings, they are a prime target cell population for immune checkpoint inhibition (ICI) because they highly express inhibitory checkpoint molecules such as PD-1, CTLA-4, or LAG-3. Once melanoma patients are treated with ICI, T RM cells residing in the tumor are reactivated and expand. Tumor killing is achieved by secreting effector molecules such as IFN-γ. However, off-target effects are also observed. Immune-related adverse events, such as those affecting barrier organs like the skin, can be mediated by ICI-induced T RM cells. Therefore, a detailed understanding of this memory T-cell type is obligatory to better guide and improve immunotherapy regimens.
Can physiologic colonic 18FFDG uptake in PET/CT imaging predict response to immunotherapy in metastatic melanoma?
AimThe development of biomarkers that can reliably and early predict response to immune checkpoint inhibitors (ICIs) is crucial in melanoma. In recent years, the gut microbiome has emerged as an important regulator of immunotherapy response, which may, moreover, serve as a surrogate marker and prognosticator in oncological patients under immunotherapy. Aim of the present study is to investigate if physiologic colonic [18F]FDG uptake in PET/CT before start of ICIs correlates with clinical outcome of metastatic melanoma patients. The relation between [18F]FDG uptake in lymphoid cell-rich organs and long-term patient outcome is also assessed.MethodologyOne hundred nineteen stage IV melanoma patients scheduled for immunotherapy with ipilimumab, applied either as monotherapy or in combination with nivolumab, underwent baseline [18F]FDG PET/CT. PET/CT data analysis consisted of standardized uptake value (SUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) calculations in the colon as well as measurements of the colon-to-liver SUV ratios (CLRmean, CLRmax). Visual grading of colon uptake based on a four-point scale was also performed. Moreover, the spleen-to-liver SUV ratios (SLRmean, SLRmax) and the bone marrow-to-liver SUV ratios (BLRmean, BLRmax) were calculated. We also measured serum lipopolysaccharide (LPS) levels as a marker for bacterial translocation and surrogate for mucosal defense homeostasis. The results were correlated with patients’ best clinical response, progression-free survival (PFS), and overall survival (OS) as well as clinical signs of colitis.ResultsMedian follow-up [95%CI] from the beginning of immunotherapy was 64.6 months [61.0–68.6 months]. Best response to treatment was progressive disease (PD) for 60 patients, stable disease (SD) for 37 patients, partial response (PR) for 18 patients, and complete response (CR) for 4 patients. Kaplan–Meier curves demonstrated a trend for longer PFS and OS in patients with lower colonic SUV and CLR values; however, no statistical significance for these parameters as prognostic factors was demonstrated. On the other hand, patients showing disease control as best response to treatment (SD, PR, CR) had significantly lower colonic MTV and TLG than those showing PD. With regard to lymphoid cell-rich organs, significantly lower baseline SLRmax and BLRmax were observed in patients responding with disease control than progression to treatment. Furthermore, patients with lower SLRmax and BLRmax values had a significantly longer OS when dichotomized at their median. In multivariate analysis, PET parameters that were found to significantly adversely correlate with patient survival were colonic MTV for PFS, colonic TLG for PFS, and BLRmax for PFS and OS.ConclusionsPhysiologic colonic [18F]FDG uptake in PET/CT, as assessed by means of SUV, before start of ipilimumab-based treatment does not seem to independently predict patient survival of metastatic melanoma. On the other hand, volumetric PET parameters, such as MTV and TLG, derived from the normal gut may identify patients showing disease control to immunotherapy and significantly correlate with PFS. Moreover, the investigation of glucose metabolism in the spleen and the bone marrow may offer prognostic information.
T Cell-Engaging Bispecific Antibodies Targeting gp100 and PRAME: Expanding Application from Uveal Melanoma to Cutaneous Melanoma
Uveal melanoma represents a rare and aggressive subtype of melanoma with limited treatment options and poor prognosis, especially in the metastatic setting. Tebentafusp, a bispecific fusion protein, offers a promising therapeutic approach by targeting gp100, an antigen highly expressed in uveal melanoma cells, and redirecting T cell-mediated cytotoxicity towards tumor cells. This review provides an overview of the preclinical and clinical data on tebentafusp in the management of metastatic uveal melanoma. We summarize the mechanism of action, clinical efficacy, safety profile, and ongoing research efforts surrounding this innovative immunotherapy. Preclinical studies have demonstrated the ability of tebentafusp to induce potent and specific anti-tumor immune responses against gp100-expressing uveal melanoma cells. Clinical trials have shown encouraging results, with tebentafusp exhibiting meaningful clinical activity in a subset of patients with metastatic uveal melanoma. Importantly, tebentafusp has also demonstrated a manageable safety profile. By specifically targeting tumor cells expressing gp100, tebentafusp offers a promising therapeutic avenue for individuals with metastatic uveal melanoma, meeting a significant clinical need in this context. Continued clinical trials will provide additional insights into the impact of tebentafusp on treatment-resistant metastatic cutaneous melanoma. Furthermore, we are exploring the potential of T cell engagers directed against the cancer testis antigen PRAME, which could have widespread utility in the treatment of cutaneous melanoma as well as other PRAME-expressing malignancies.
First-line avelumab in a cohort of 116 patients with metastatic Merkel cell carcinoma (JAVELIN Merkel 200): primary and biomarker analyses of a phase II study
BackgroundAvelumab (anti-programmed death ligand 1 (PD-L1)) is approved in multiple countries for the treatment of metastatic Merkel cell carcinoma (mMCC), a rare and aggressive skin cancer. We report efficacy and safety data and exploratory biomarker analyses from a cohort of patients with mMCC treated with first-line avelumab in a phase II trial.MethodsPatients with treatment-naive mMCC received avelumab 10 mg/kg intravenously every 2 weeks. The primary endpoint was durable response, defined as objective response (complete or partial response; assessed by independent review) lasting ≥6 months. Additional assessments included progression-free survival (PFS), overall survival (OS), safety, and biomarker analyses.ResultsIn 116 patients treated with avelumab, median follow-up was 21.2 months (range: 14.9–36.6). Thirty-five patients had a response lasting ≥6 months, giving a durable response rate of 30.2% (95% CI: 22.0% to 39.4%). The objective response rate was 39.7% (95% CI: 30.7% to 49.2%). Median PFS was 4.1 months (95% CI: 1.4 to 6.1) and median OS was 20.3 months (95% CI: 12.4 to not estimable). Response rates were numerically higher in patients with PD-L1+ tumors, Merkel cell polyomavirus (MCPyV)-negative tumors, and tumors with increased intratumoral CD8+ T-cell density. Exploratory analyses did not identify a biomarker that could reliably predict a response to first-line treatment with avelumab; however, a novel gene expression signature to identify the presence of MCPyV+ tumors was derived. Treatment-related adverse events (any grade) occurred in 94 (81.0%) patients, including grade 3/4 events in 21 (18.1%) patients; no treatment-related deaths occurred.ConclusionIn patients with mMCC, first-line treatment with avelumab led to responses in 40% and durable responses in 30%, and was associated with a low rate of grade 3/4 treatment-related adverse events.
Tebentafusp, a T cell engager, promotes macrophage reprogramming and in combination with IL-2 overcomes macrophage immunosuppression in cancer
Uveal melanoma (UM) is the most common intraocular cancer in adults, with metastatic disease (mUM) occurring in approximately half of the patients. Tebentafusp, an immune-mobilizing monoclonal T cell receptor against cancer (ImmTAC), is a therapeutic shown to improve overall survival (OS) in HLA-A*02:01 + adult patients with mUM. Here we investigate the impact of tumor-associated macrophages (TAM) on ImmTAC activity. In vitro, M2 macrophages inhibit ImmTAC-mediated tumor-killing in a dose-dependent and contact-dependent manner. Accordingly, high baseline intratumoral TAM-to-T cell ratios correlate with shorter OS (HR = 2.09, 95% CI, 1.31–3.33, p  = 0.002) in tebentafusp-treated mUM patients from a phase 2 trial. By contrast, IL-2 conditioning of T cells overcomes M2 macrophage-mediated suppression in vitro, while ImmTAC treatment leads to M2-to-M1 macrophage reprogramming both in vitro and in tebentafusp-treated mUM patients. Overall, we show that tebentafusp reshapes the tumor microenvironment to enhance anti-tumor T cell activity, whilst combining tebentafusp with IL-2 may enhance benefit in patients with high levels of TAM. ‘T cell engagers promote antitumor immunity, but how macrophage modulates this activity in tumor is still unclear. Here the authors show, using biopsies from patients with uveal melanoma and single cell analyses, that a T cell engager, tebentafusp, reprograms tumor-associated macrophages and ameliorates, in synergy with IL-2, immunosuppression to cancer.