Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
201
result(s) for
"Hattori, Masahira"
Sort by:
Long-read metagenomics using PromethION uncovers oral bacteriophages and their interaction with host bacteria
2021
Bacteriophages (phages), or bacterial viruses, are very diverse and highly abundant worldwide, including as a part of the human microbiomes. Although a few metagenomic studies have focused on oral phages, they relied on short-read sequencing. Here, we conduct a long-read metagenomic study of human saliva using PromethION. Our analyses, which integrate both PromethION and HiSeq data of >30 Gb per sample with low human DNA contamination, identify hundreds of viral contigs; 0–43.8% and 12.5–56.3% of the confidently predicted phages and prophages, respectively, do not cluster with those reported previously. Our analyses demonstrate enhanced scaffolding, and the ability to place a prophage in its host genomic context and enable its taxonomic classification. Our analyses also identify a
Streptococcus
phage/prophage group and nine jumbo phages/prophages. 86% of the phage/prophage group and 67% of the jumbo phages/prophages contain remote homologs of antimicrobial resistance genes. Pan-genome analysis of the phages/prophages reveals remarkable diversity, identifying 0.3% and 86.4% of the genes as core and singletons, respectively. Furthermore, our study suggests that oral phages present in human saliva are under selective pressure to escape CRISPR immunity. Our study demonstrates the power of long-read metagenomics utilizing PromethION in uncovering bacteriophages and their interaction with host bacteria.
Here, the authors profile the oral phageome of 4 healthy individuals via longread shotgun metagenomics using PromethION, a recently developed highthroughput nanopore sequencer, and uncover potential new candidate phages with enhanced scaffolding and their interaction with host bacteria.
Journal Article
Evolutionary origin of insect–Wolbachia nutritional mutualism
2014
Obligate insect–bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect– Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius , designated as w Cle, was shown to be essential for host’s growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of w Cle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia . Nutritional and physiological experiments, in which w Cle-infected and w Cle-cured bedbugs of the same genetic background were fed on B-vitamin–manipulated blood meals via an artificial feeding system, demonstrated that w Cle certainly synthesizes biotin, and the w Cle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug– Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.
Journal Article
Gut microbial carbohydrate metabolism contributes to insulin resistance
by
Kwon, Andrew Tae-Jun
,
Yugi, Katsuyuki
,
Carninci, Piero
in
631/326/2565/2134
,
631/326/2565/2142
,
631/61/320
2023
Insulin resistance is the primary pathophysiology underlying metabolic syndrome and type 2 diabetes
1
,
2
. Previous metagenomic studies have described the characteristics of gut microbiota and their roles in metabolizing major nutrients in insulin resistance
3
–
9
. In particular, carbohydrate metabolism of commensals has been proposed to contribute up to 10% of the host’s overall energy extraction
10
, thereby playing a role in the pathogenesis of obesity and prediabetes
3
,
4
,
6
. Nevertheless, the underlying mechanism remains unclear. Here we investigate this relationship using a comprehensive multi-omics strategy in humans. We combine unbiased faecal metabolomics with metagenomics, host metabolomics and transcriptomics data to profile the involvement of the microbiome in insulin resistance. These data reveal that faecal carbohydrates, particularly host-accessible monosaccharides, are increased in individuals with insulin resistance and are associated with microbial carbohydrate metabolisms and host inflammatory cytokines. We identify gut bacteria associated with insulin resistance and insulin sensitivity that show a distinct pattern of carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated bacteria ameliorate host phenotypes of insulin resistance in a mouse model. Our study, which provides a comprehensive view of the host–microorganism relationships in insulin resistance, reveals the impact of carbohydrate metabolism by microbiota, suggesting a potential therapeutic target for ameliorating insulin resistance.
Faecal carbohydrates, particularly host-accessible monosaccharides, are increased in individuals with insulin resistance and are associated with microbial carbohydrate metabolisms and host inflammatory cytokines.
Journal Article
Gut microorganisms act together to exacerbate inflammation in spinal cords
2020
Accumulating evidence indicates that gut microorganisms have a pathogenic role in autoimmune diseases, including in multiple sclerosis
1
. Studies of experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis)
2
,
3
, as well as human studies
4
–
6
, have implicated gut microorganisms in the development or severity of multiple sclerosis. However, it remains unclear how gut microorganisms act on the inflammation of extra-intestinal tissues such as the spinal cord. Here we show that two distinct signals from gut microorganisms coordinately activate autoreactive T cells in the small intestine that respond specifically to myelin oligodendrocyte glycoprotein (MOG). After induction of experimental autoimmune encephalomyelitis in mice, MOG-specific CD4
+
T cells are observed in the small intestine. Experiments using germ-free mice that were monocolonized with microorganisms from the small intestine demonstrated that a newly isolated strain in the family Erysipelotrichaceae acts similarly to an adjuvant to enhance the responses of T helper 17 cells. Shotgun sequencing of the contents of the small intestine revealed a strain of
Lactobacillus reuteri
that possesses peptides that potentially mimic MOG. Mice that were co-colonized with these two strains showed experimental autoimmune encephalomyelitis symptoms that were more severe than those of germ-free or monocolonized mice. These data suggest that the synergistic effects that result from the presence of these microorganisms should be considered in the pathogenicity of multiple sclerosis, and that further study of these microorganisms may lead to preventive strategies for this disease.
Germ-free mice co-colonized with two bacterial strains from the small intestinal flora showed increased susceptibility to experimental autoimmune encephalomyelitis, implicating the synergistic effects of these microorganisms in this mouse model of multiple sclerosis.
Journal Article
Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome
by
Ishikawa, Yuichi
,
Atarashi, Koji
,
Sato, Seidai
in
631/67/70
,
Animals
,
Anti-Bacterial Agents - pharmacology
2013
Obesity is shown in a mouse model of liver cancer to strongly enhance tumorigenesis; a high fat diet alters the composition of intestinal bacteria, leading to more production of the metabolite DCA which, probably together with other factors, induces senescence and the secretion of various senescence-associated cytokines in hepatic stellate cells, thus promoting cancer.
Bile acid metabolite links diet and cancer
Epidemiological data have demonstrated a link between obesity and cancer. This study shows that in a mouse model of liver cancer, a high-fat diet strongly enhances tumorigenesis by provoking a senescence-associated secretory phenotype (SASP), a recently identified senescent phenotype associated with the secretion of various tumour-promoting factors. Antibiotic and other interventions show that the fatty diet altered the composition of intestinal bacteria leading to more production of deoxycholic acid (DCA), a by-product of microbial bile acid metabolism that is known to cause DNA damage. The authors suggest that DCA, acting with other as-yet unknown factors, induces senescence and the secretion of various senescence-associated cytokines in hepatic stellate cells. These cytokines in turn act to promote the development of liver cancer. These findings highlight the complex mechanistic links between diet, the microbiota and cancer and suggest novel therapeutic approaches.
Obesity has become more prevalent in most developed countries over the past few decades, and is increasingly recognized as a major risk factor for several common types of cancer
1
. As the worldwide obesity epidemic has shown no signs of abating
2
, better understanding of the mechanisms underlying obesity-associated cancer is urgently needed. Although several events were proposed to be involved in obesity-associated cancer
1
,
3
, the exact molecular mechanisms that integrate these events have remained largely unclear. Here we show that senescence-associated secretory phenotype (SASP)
4
,
5
has crucial roles in promoting obesity-associated hepatocellular carcinoma (HCC) development in mice. Dietary or genetic obesity induces alterations of gut microbiota, thereby increasing the levels of deoxycholic acid (DCA), a gut bacterial metabolite known to cause DNA damage
6
. The enterohepatic circulation of DCA provokes SASP phenotype in hepatic stellate cells (HSCs)
7
, which in turn secretes various inflammatory and tumour-promoting factors in the liver, thus facilitating HCC development in mice after exposure to chemical carcinogen. Notably, blocking DCA production or reducing gut bacteria efficiently prevents HCC development in obese mice. Similar results were also observed in mice lacking an SASP inducer
8
or depleted of senescent HSCs, indicating that the DCA–SASP axis in HSCs has key roles in obesity-associated HCC development. Moreover, signs of SASP were also observed in the HSCs in the area of HCC arising in patients with non-alcoholic steatohepatitis
3
, indicating that a similar pathway may contribute to at least certain aspects of obesity-associated HCC development in humans as well. These findings provide valuable new insights into the development of obesity-associated cancer and open up new possibilities for its control.
Journal Article
Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters
2015
The pathogenesis of multiple sclerosis (MS), an autoimmune disease affecting the brain and spinal cord, remains poorly understood. Patients with MS typically present with recurrent episodes of neurological dysfunctions such as blindness, paresis, and sensory disturbances. Studies on experimental autoimmune encephalomyelitis (EAE) animal models have led to a number of testable hypotheses including a hypothetical role of altered gut microbiota in the development of MS. To investigate whether gut microbiota in patients with MS is altered, we compared the gut microbiota of 20 Japanese patients with relapsing-remitting (RR) MS (MS20) with that of 40 healthy Japanese subjects (HC40) and an additional 18 healthy subjects (HC18). All the HC18 subjects repeatedly provided fecal samples over the course of months (158 samples in total). Analysis of the bacterial 16S ribosomal RNA (rRNA) gene by using a high-throughput culture-independent pyrosequencing method provided evidence of a moderate dysbiosis in the structure of gut microbiota in patients with MS. Furthermore, we found 21 species that showed significant differences in relative abundance between the MS20 and HC40 samples. On comparing MS samples to the 158 longitudinal HC18 samples, the differences were found to be reproducibly significant for most of the species. These taxa comprised primarily of clostridial species belonging to Clostridia clusters XIVa and IV and Bacteroidetes. The phylogenetic tree analysis revealed that none of the clostridial species that were significantly reduced in the gut microbiota of patients with MS overlapped with other spore-forming clostridial species capable of inducing colonic regulatory T cells (Treg), which prevent autoimmunity and allergies; this suggests that many of the clostridial species associated with MS might be distinct from those broadly associated with autoimmune conditions. Correcting the dysbiosis and altered gut microbiota might deserve consideration as a potential strategy for the prevention and treatment of MS.
Journal Article
Small genome symbiont underlies cuticle hardness in beetles
2017
Beetles, representing the majority of the insect species diversity, are characterized by thick and hard cuticle, which plays important roles for their environmental adaptation and underpins their inordinate diversity and prosperity. Here, we report a bacterial endosymbiont extremely specialized for sustaining beetle’s cuticle formation. Many weevils are associated with a γ-proteobacterial endosymbiont lineage Nardonella, whose evolutionary origin is estimated as older than 100 million years, but its functional aspect has been elusive. Sequencing of Nardonella genomes from diverse weevils unveiled drastic size reduction to 0.2 Mb, in which minimal complete gene sets for bacterial replication, transcription, and translation were present but almost all of the other metabolic pathway genes were missing. Notably, the only metabolic pathway retained in the Nardonella genomes was the tyrosine synthesis pathway, identifying tyrosine provisioning as Nardonella’s sole biological role. Weevils are armored with hard cuticle, tyrosine is the principal precursor for cuticle formation, and experimental suppression of Nardonella resulted in emergence of reddish and soft weevils with low tyrosine titer, confirming the importance of Nardonella-mediated tyrosine production for host’s cuticle formation and hardening. Notably, Nardonella’s tyrosine synthesis pathway was incomplete, lacking the final step transaminase gene. RNA sequencing identified host’s aminotransferase genes up-regulated in the bacteriome. RNA interference targeting the aminotransferase genes induced reddish and soft weevils with low tyrosine titer, verifying host’s final step regulation of the tyrosine synthesis pathway. Our finding highlights an impressively intimate and focused aspect of the host–symbiont metabolic integrity via streamlined evolution for a single biological function of ecological relevance.
Journal Article
Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians
by
Sasaki, Takahiro
,
Narushima, Seiko
,
Hattori, Masahira
in
101/28
,
101/58
,
3-Hydroxysteroid Dehydrogenases - metabolism
2021
Centenarians have a decreased susceptibility to ageing-associated illnesses, chronic inflammation and infectious diseases
1
–
3
. Here we show that centenarians have a distinct gut microbiome that is enriched in microorganisms that are capable of generating unique secondary bile acids, including various isoforms of lithocholic acid (LCA): iso-, 3-oxo-, allo-, 3-oxoallo- and isoallolithocholic acid. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from the faecal microbiota of a centenarian, we identified Odoribacteraceae strains as effective producers of isoalloLCA both in vitro and in vivo. Furthermore, we found that the enzymes 5α-reductase (5AR) and 3β-hydroxysteroid dehydrogenase (3β-HSDH) were responsible for the production of isoalloLCA. IsoalloLCA exerted potent antimicrobial effects against Gram-positive (but not Gram-negative) multidrug-resistant pathogens, including
Clostridioides difficile
and
Enterococcus faecium
. These findings suggest that the metabolism of specific bile acids may be involved in reducing the risk of infection with pathobionts, thereby potentially contributing to the maintenance of intestinal homeostasis.
The microbiota of centenarians (aged 100 years and older) comprise gut microorganisms that are capable of generating unique secondary bile acids, including isoallolithocholic acid, a bile acid with potent antimicrobial effects against Gram-positive—but not Gram-negative—multidrug-resistant pathogens.
Journal Article
The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan
by
Hattori, Masahira
,
Nakano, Takashi
,
Nara, Kazuhide
in
631/158/853
,
631/326/193/2539
,
631/326/2565/547
2014
Mid-domain effect (MDE) models predict that the random placement of species’ ranges within a bounded geographical area leads to increased range overlap and species richness in the center of the bounded area. These models are frequently applied to study species-richness patterns of macroorganisms, but the MDE in relation to microorganisms is poorly understood. In this study, we examined the characteristics of the MDE in richness patterns of ectomycorrhizal (EM) fungi, an ecologically important group of soil symbionts. We conducted intensive soil sampling to investigate overlap among species ranges and the applicability of the MDE to EM fungi in four temperate forest stands along an elevation gradient on Mount Fuji, Japan. Molecular analyses using direct sequencing revealed 302 EM fungal species. Of 73 EM fungal species found in multiple stands, 72 inhabited a continuous range along the elevation gradient. The maximum overlap in species range and the highest species richness occurred at elevations in the middle of the gradient. The observed richness pattern also fit within the 95% confidence interval of the mid-domain null model, supporting the role of the MDE in EM fungal richness. Deviation in observed richness from the mean of the mid-domain null estimation was negatively correlated with some environmental factors, including precipitation and soil C/N, indicating that unexplained richness patterns could be driven by these environmental factors. Our results clearly support the existence of microbial species’ ranges along environmental gradients and the potential applicability of the MDE to better understand microbial diversity patterns.
Journal Article
Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis
by
Yamamura, Takashi
,
Takewaki, Daiki
,
Mizuno, Toshiki
in
Autoimmune diseases
,
Biological Sciences
,
Biosynthesis
2020
Multiple sclerosis (MS), an autoimmune disease of the central nervous system, generally starts as the relapsing remitting form (RRMS), but often shifts into secondary progressive MS (SPMS). SPMS represents a more advanced stage of MS, characterized by accumulating disabilities and refractoriness to medications. The aim of this study was to clarify the microbial and functional differences in gut microbiomes of the different stages of MS. Here, we compared gut microbiomes of patients with RRMS, SPMS, and two closely related disorders with healthy controls (HCs) by 16S rRNA gene and whole metagenomic sequencing data from fecal samples and by fecal metabolites. Each patient group had a number of species having significant changes in abundance in comparison with HCs, including short-chain fatty acid (SCFA)-producing bacteria reduced in MS. Changes in some species had close association with clinical severity of the patients. A marked reduction in butyrate and propionate biosynthesis and corresponding metabolic changes were confirmed in RRMS compared with HCs. Although bacterial composition analysis showed limited differences between the patient groups, metagenomic functional data disclosed an increase in microbial genes involved in DNA mismatch repair in SPMS as compared to RRMS. Together with an increased ratio of cysteine persulfide to cysteine in SPMS revealed by sulfur metabolomics, we postulate that excessive DNA oxidation could take place in the gut of SPMS. Thus, gut ecological and functional microenvironments were significantly altered in the different stages of MS. In particular, reduced SCFA biosynthesis in RRMS and elevated oxidative level in SPMS were characteristic.
Journal Article