Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Haug, Line Småstuen"
Sort by:
Prenatal Exposure to Perfluorooctanoate and Risk of Overweight at 20 Years of Age: A Prospective Cohort Study
by
Henriksen, Tine Brink
,
Haug, Line Småstuen
,
Halldorsson, Thorhallur I.
in
Adiposity
,
Adult
,
Ammonium perfluorooctanoate
2012
Background: Perfluoroalkyl adds are persistent compounds used in various industrial applications. Of these compounds, perfluorooctanoate (PFOA) is currently detected in humans worldwide. A recent study on low-dose developmental exposure to PFOA in mice reported increased weight and elevated biomarkers of adiposity in postpubertal female offspring. Objective: We examined whether the findings of increased weight in postpubertal female mice could be replicated in humans. Methods: A prospective cohort of 665 Danish pregnant women was recruited in 1988-1989 with offspring follow-up at 20 years. PFOA was measured in serum from gestational week 30. Offspring body mass index (BMI) and waist circumference were recorded at follow-up (n = 665), and bio-markers of adiposity were quantified in a subset (n = 422) of participants. Results: After adjusting for covariates, including maternal prepregnancy BMI, smoking, education, and birth weight, in utero exposure to PFOA was positively associated with anthropometry at 20 years in female but not male offspring. Adjusted relative risks comparing the highest with lowest quartile (median: 5.8 vs. 2.3 ng/mL) of maternal PFOA concentration were 3.1 [95% confidence interval (CI): 1.4, 6.9] for overweight or obese (BMI ≥ 25 kg/m²) and 3.0 (95% CI: 1.3, 6.8) for waist circumference > 88 cm among female offspring. This corresponded to estimated increases of 1.6 kg/m² (95% CI: 0.6, 2.6) and 4.3 cm (95% CI: 1.4, 7.3) in average BMI and waist circumference, respectively. In addition, maternal PFOA concentrations were positively associated with serum insulin and leptin levels and inversely associated with adiponectin levels in female offspring. Similar associations were observed for males, although point estimates were less precise because of fewer observations. Maternal perfluorooctane sulfonate (PFOS), perfluorooctane sulfonamide (PFOSA), and perfluorononanoate (PFNA) concentrations were not independently associated with offspring anthropometry at 20 years. Conclusions: Our findings on the effects of low-dose developmental exposures to PFOA are in line with experimental results suggesting obesogenic effects in female offspring at 20 years of age.
Journal Article
Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs)
2018
Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, –CnF2n–. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science–policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs.
Publication
Diet as a Source of Exposure to Environmental Contaminants for Pregnant Women and Children from Six European Countries
by
Brantsaeter, Anne Lise
,
Haug, Line Småstuen
,
Wright, John
in
Adult
,
Alkanesulfonic Acids
,
Analysis
2019
Background:Pregnant women and children are especially vulnerable to exposures to food contaminants, and a balanced diet during these periods is critical for optimal nutritional status.Objectives:Our objective was to study the association between diet and measured blood and urinary levels of environmental contaminants in mother–child pairs from six European birth cohorts (n=818 mothers and 1,288 children).Methods:We assessed the consumption of seven food groups and the blood levels of organochlorine pesticides, polybrominated diphenyl ethers, polychlorinated biphenyls (PCBs), per- and polyfluoroalkyl substances (PFAS), and heavy metals and urinary levels of phthalate metabolites, phenolic compounds, and organophosphate pesticide (OP) metabolites. Organic food consumption during childhood was also studied. We applied multivariable linear regressions and targeted maximum likelihood based estimation (TMLE).Results:Maternal high (≥4 times/week) versus low (<2 times/week) fish consumption was associated with 15% higher PCBs [geometric mean (GM) ratio=1.15; 95% confidence interval (CI): 1.02, 1.29], 42% higher perfluoroundecanoate (PFUnDA) (GM ratio=1.42; 95% CI: 1.20, 1.68), 89% higher mercury (Hg) (GM ratio=1.89; 95% CI: 1.47, 2.41) and a 487% increase in arsenic (As) (GM ratio=4.87; 95% CI: 2.57, 9.23) levels. In children, high (≥3 times/week) versus low (<1.5 times/week) fish consumption was associated with 23% higher perfluorononanoate (PFNA) (GM ratio=1.23; 95% CI: 1.08, 1.40), 36% higher PFUnDA (GM ratio=1.36; 95% CI: 1.12, 1.64), 37% higher perfluorooctane sulfonate (PFOS) (GM ratio=1.37; 95% CI: 1.22, 1.54), and >200% higher Hg and As [GM ratio=3.87 (95% CI: 1.91, 4.31) and GM ratio=2.68 (95% CI: 2.23, 3.21)] concentrations. Using TMLE analysis, we estimated that fish consumption within the recommended 2–3 times/week resulted in lower PFAS, Hg, and As compared with higher consumption. Fruit consumption was positively associated with OP metabolites. Organic food consumption was negatively associated with OP metabolites.Discussion:Fish consumption is related to higher PFAS, Hg, and As exposures. In addition, fruit consumption is a source of exposure to OPs. https://doi-org.proxy.insermbiblio.inist.fr/10.1289/EHP5324
Journal Article
Multi-omics architecture of childhood obesity and metabolic dysfunction uncovers biological pathways and prenatal determinants
2025
Childhood obesity poses a significant public health challenge, yet the molecular intricacies underlying its pathobiology remain elusive. Leveraging extensive multi-omics profiling (methylome, miRNome, transcriptome, proteins and metabolites) and a rich phenotypic characterization across two parts of Europe within the population-based Human Early Life Exposome project, we unravel the molecular landscape of childhood obesity and associated metabolic dysfunction. Our integrative analysis uncovers three clusters of children defined by specific multi-omics profiles, one of which characterized not only by higher adiposity but also by a high degree of metabolic complications. This high-risk cluster exhibits a complex interplay across many biological pathways, predominantly underscored by inflammation-related cascades. Further, by incorporating comprehensive information from the environmental risk-scape of the critical pregnancy period, we identify pre-pregnancy body mass index and environmental pollutants like perfluorooctanoate and mercury as important determinants of the high-risk cluster. Overall, our work helps to identify potential risk factors for prevention and intervention strategies early in the life course aimed at mitigating obesity and its long-term health consequences.
Obesity encompasses numerous interconnected pathological mechanisms. Here, the authors show that integrating multi-omics data uncovers distinct molecular profiles and prenatal factors linked to childhood obesity and metabolic dysfunction, providing insights for early prevention and intervention strategies.
Journal Article
Risk to human health related to the presence of perfluoroalkyl substances in food
2020
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half‐lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and ‘other children’ showed a twofold higher exposure. Upper bound exposure was 4‐ to 49‐fold higher than LB levels, but the latter were considered more reliable. ‘Fish meat’, ‘Fruit and fruit products’ and ‘Eggs and egg products’ contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1‐year‐old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long‐term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2020.EN-1931/full
Journal Article
Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food
2018
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were ‘Fish and other seafood’, ‘Meat and meat products’ and ‘Eggs and egg products’, for PFOS, and ‘Milk and dairy products’, ‘Drinking water’ and ‘Fish and other seafood’ for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half‐lives for PFOS and PFOA are about 5 years and 2–4 years, respectively. The derivation of a health‐based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Journal Article
Associations of in Utero Exposure to Perfluorinated Alkyl Acids with Human Semen Quality and Reproductive Hormones in Adult Men
by
Halldorsson, Thorhallur Ingi
,
Vested, Anne
,
Haug, Line Småstuen
in
Acids
,
Adults
,
Alkanesulfonic Acids - blood
2013
Perfluorinated alkyl acids (PFAAs), persistent chemicals with unique water-, dirt-, and oil-repellent properties, are suspected of having endocrine-disrupting activity. The PFAA compounds perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are found globally in humans; because they readily cross the placental barrier, in utero exposure may be a cause for concern.
We investigated whether in utero exposure to PFOA and PFOS affects semen quality, testicular volume, and reproductive hormone levels.
We recruited 169 male offspring (19-21 years of age) from a pregnancy cohort established in Aarhus, Denmark, in 1988-1989, corresponding to 37.6% of the eligible sons. Each man provided a semen sample and a blood sample. Semen samples were analyzed for sperm concentration, total sperm count, motility, and morphology, and blood samples were used to measure reproductive hormones. As a proxy for in utero exposure, PFOA and PFOS were measured in maternal blood samples from pregnancy week 30.
Multivariable linear regression analysis suggested that in utero exposure to PFOA was associated with lower adjusted sperm concentration (ptrend = 0.01) and total sperm count (ptrend = 0.001) and with higher adjusted levels of luteinizing hormone (ptrend = 0.03) and follicle-stimulating hormone (ptrend = 0.01). PFOS did not appear to be associated with any of the outcomes assessed, before or after adjustment.
The results suggest that in utero exposure to PFOA may affect adult human male semen quality and reproductive hormone levels.
Journal Article
Concentrations of per- and polyfluoroalkyl substances (PFAS) in paired tap water and blood samples during pregnancy
by
Paraian, Alexandra
,
Haug, Line Småstuen
,
Vrijheid, Martine
in
Activated carbon
,
Blood
,
Blood levels
2024
Per- and polyfluoroalkyl substances (PFAS) are water-soluble chemicals of concern due to their persistence, ubiquity, and toxicity. We explored correlations between drinking water and blood PFAS levels in a subset of the mother-child Barcelona Life Study Cohort (BiSC), Barcelona, Spain (2021). For 105 study participants, we analyzed 35 PFAS in tap water (unfiltered and filtered) and 23 PFAS in 98 paired plasma samples during the 3rd trimester, using LC-MS/MS. Water consumption habits were ascertained at the third trimester through questionnaires. The majority of participants consumed bottled water (56.2%), 5/35 PFAS were detected in unfiltered tap water, 4/35 PFAS in activated carbon filtered tap water samples, and 14/23 PFAS in plasma samples. Our results showed that PFHpA at the observed concentrations in drinking water was significantly correlated with paired plasma levels (R = 0.2; p = 0.04).Impact statementExposure to PFAS is an emerging public health concern. Our manuscript contributes meaningful information from a subset of the mother-child Barcelona Life Study Cohort (BiSC), reporting levels of a wide range of PFAS in paired tap water and plasma samples from a sensitive subpopulation residing away from point source contamination. Our findings draw attention to low-exposure ranges of PFAS in drinking water, and a weak but significant water-plasma correlation for PFHpA (a PFOA homologue), suggesting that drinking water can be a contributor to human exposure to PFHpA.
Journal Article
Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies
2022
More than 20 years ago, acrylamide was added to the list of potential carcinogens found in many common dietary products and tobacco smoke. Consequently, human biomonitoring studies investigating exposure to acrylamide in the form of adducts in blood and metabolites in urine have been performed to obtain data on the actual burden in different populations of the world and in Europe. Recognizing the related health risk, the European Commission responded with measures to curb the acrylamide content in food products. In 2017, a trans-European human biomonitoring project (HBM4EU) was started with the aim to investigate exposure to several chemicals, including acrylamide. Here we set out to provide a combined analysis of previous and current European acrylamide biomonitoring study results by harmonizing and integrating different data sources, including HBM4EU aligned studies, with the aim to resolve overall and current time trends of acrylamide exposure in Europe. Data from 10 European countries were included in the analysis, comprising more than 5500 individual samples (3214 children and teenagers, 2293 adults). We utilized linear models as well as a non-linear fit and breakpoint analysis to investigate trends in temporal acrylamide exposure as well as descriptive statistics and statistical tests to validate findings. Our results indicate an overall increase in acrylamide exposure between the years 2001 and 2017. Studies with samples collected after 2018 focusing on adults do not indicate increasing exposure but show declining values. Regional differences appear to affect absolute values, but not the overall time-trend of exposure. As benchmark levels for acrylamide content in food have been adopted in Europe in 2018, our results may imply the effects of these measures, but only indicated for adults, as corresponding data are still missing for children.
Journal Article
Trends of Exposure to Acrylamide as Measured by Urinary Biomarkers Levels within the HBM4EU Biomonitoring Aligned Studies (2000–2021)
2022
Acrylamide, a substance potentially carcinogenic in humans, represents a very prevalent contaminant in food and is also contained in tobacco smoke. Occupational exposure to higher concentrations of acrylamide was shown to induce neurotoxicity in humans. To minimize related risks for public health, it is vital to obtain data on the actual level of exposure in differently affected segments of the population. To achieve this aim, acrylamide has been added to the list of substances of concern to be investigated in the HBM4EU project, a European initiative to obtain biomonitoring data for a number of pollutants highly relevant for public health. This report summarizes the results obtained for acrylamide, with a focus on time-trends and recent exposure levels, obtained by HBM4EU as well as by associated studies in a total of seven European countries. Mean biomarker levels were compared by sampling year and time-trends were analyzed using linear regression models and an adequate statistical test. An increasing trend of acrylamide biomarker concentrations was found in children for the years 2014–2017, while in adults an overall increase in exposure was found to be not significant for the time period of observation (2000–2021). For smokers, represented by two studies and sampling for, over a total three years, no clear tendency was observed. In conclusion, samples from European countries indicate that average acrylamide exposure still exceeds suggested benchmark levels and may be of specific concern in children. More research is required to confirm trends of declining values observed in most recent years.
Journal Article