Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Hauri, Simon"
Sort by:
The CRAPome: a contaminant repository for affinity purification–mass spectrometry data
The Contaminant Repository for Affinity Purification (CRAPome) is a database of annotated negative control-data that can be used for filtering out nonspecific interactions in affinity purification-mass spectrometry experiments. Affinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (for example, proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. The standard approach is to identify nonspecific interactions using one or more negative-control purifications, but many small-scale AP-MS studies do not capture a complete, accurate background protein set when available controls are limited. Fortunately, negative controls are largely bait independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the contaminant repository for affinity purification (the CRAPome) and describe its use for scoring protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae ) and computational tools are freely accessible at http://www.crapome.org/ .
Functional in vitro assessment of modified antibodies: Impact of label on protein properties
Labelling of therapeutic antibodies with radionuclides or fluorophores is routinely used to study their pharmacokinetic properties. A critical assumption in utilizing labelled therapeutic antibodies is that the label has no unfavourable effects on antibody charge, hydrophobicity, or receptor affinity. Ideally, the labelled protein should not have any significant deviations from the physiological properties of the original molecule. This article describes an established quality in vitro assessment workflow for labelled antibodies that ensures better prediction of changes in antibody pharmacokinetic (PK) properties after modifications. This analysis package considers degradation and aggregation analysis by size-exclusion chromatography, changes in neonatal-Fc-receptor (FcRn) affinity, and heparin interaction. FcRn binding is important for antibody recycling and half-life extension, whereas heparin affinity provides estimates on the rate of endocytosis through unspecific cell surface binding. Additionally, mass spectrometric analysis to determine the degree of labelling (DoL) completes the package and the combined analysis data allow to predict the label contribution to the PK properties of the modified antibody. This analytical strategy for labelling 11 IgGs has been investigated using 2 different IgG 1 constructs and applying 7 different types of labels. Each labelling resulted in a change in the physicochemical properties of the protein. Not only can the DoL of modified IgGs lead to a change in protein properties, but the type of label also can. Furthermore, it was demonstrated that the labelling process can also influence the behaviour of labelled mAbs. An identical label on different constructs of IgG 1 can cause different affinities for FcRn and heparin. Considering the assessment data, only 6 of the 11 modified antibodies from this study can be recommended for subsequent experiments. In conclusion, a suitability assessment of labelled antibodies prior to any pharmacokinetic studies is essential to reduce cost, allocate resources and reduce the number of animal experiments during pre-clinical drug development.
Rapid determination of quaternary protein structures in complex biological samples
The understanding of complex biological systems is still hampered by limited knowledge of biologically relevant quaternary protein structures. Here, we demonstrate quaternary structure determination in biological samples using a combination of chemical cross-linking, high-resolution mass spectrometry and high-accuracy protein structure modeling. This approach, termed targeted cross-linking mass spectrometry (TX-MS), relies on computational structural models to score sets of targeted cross-linked peptide signals acquired using a combination of mass spectrometry acquisition techniques. We demonstrate the utility of TX-MS by creating a high-resolution quaternary model of a 1.8 MDa protein complex composed of a pathogen surface protein and ten human plasma proteins. The model is based on a dense network of cross-link distance constraints obtained directly in a mixture of human plasma and live bacteria. These results demonstrate that TX-MS can increase the applicability of flexible backbone docking algorithms to large protein complexes by providing rich cross-link distance information from complex biological samples. Protein structure determination in complex biological samples is still challenging. Here, the authors develop a computational modeling-guided cross-linking mass spectrometry method, obtaining a high-resolution model of a 1.8 MDa protein assembly from cross-links detected in a mixture of human plasma and bacteria.
Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics
The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. Sepsis can lead to multiple organ failure that could potentially be reflected by change in plasma protein abundance. Here the authors describe a proteomics strategy that allows the determination of plasma proteins tissue origin in a quantitative manner for use as biomarkers—illustrated in a mouse model of sepsis.
Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS
A systematic study of the intra- and interlaboratory reproducibility of a standardized affinity purification–mass spectrometry protocol demonstrates the high reproducibility of this technique and hints at the feasibility of a large-scale human interactome project through interlaboratory efforts. The characterization of all protein complexes of human cells under defined physiological conditions using affinity purification–mass spectrometry (AP-MS) is a highly desirable step in the quest to understand the phenotypic effects of genomic information. However, such a challenging goal has not yet been achieved, as it requires reproducibility of the experimental workflow and high data consistency across different studies and laboratories. We systematically investigated the reproducibility of a standardized AP-MS workflow by performing a rigorous interlaboratory comparative analysis of the interactomes of 32 human kinases. We show that it is possible to achieve high interlaboratory reproducibility of this standardized workflow despite differences in mass spectrometry configurations and subtle sample preparation–related variations and that combination of independent data sets improves the approach sensitivity, resulting in even more-detailed networks. Our analysis demonstrates the feasibility of obtaining a high-quality map of the human protein interactome with a multilaboratory project.
A quantitative Streptococcus pyogenes–human protein–protein interaction map reveals localization of opsonizing antibodies
A fundamental challenge in medical microbiology is to characterize the dynamic protein–protein interaction networks formed at the host–pathogen interface. Here, we generate a quantitative interaction map between the significant human pathogen, Streptococcus pyogenes , and proteins from human saliva and plasma obtained via complementary affinity-purification and bacterial-surface centered enrichment strategies and quantitative mass spectrometry. Perturbation of the network using immunoglobulin protease cleavage, mixtures of different concentrations of saliva and plasma, and different S. pyogenes serotypes and their isogenic mutants, reveals how changing microenvironments alter the interconnectivity of the interaction map. The importance of host immunoglobulins for the interaction with human complement proteins is demonstrated and potential protective epitopes of importance for phagocytosis of S. pyogenes cells are localized. The interaction map confirms several previously described protein–protein interactions; however, it also reveals a multitude of additional interactions, with possible implications for host–pathogen interactions involving other bacterial species. Characterizing host-pathogen protein interactions can help elucidate the molecular basis of bacterial infections. Here, the authors use an integrative proteomics approach to generate a quantitative map of protein interactions between Streptococcus pyogenes and human saliva and plasma.
ASPP proteins discriminate between PP1 catalytic subunits through their SH3 domain and the PP1 C-tail
Serine/threonine phosphatases such as PP1 lack substrate specificity and associate with a large array of targeting subunits to achieve the requisite selectivity. The tumour suppressor ASPP (apoptosis-stimulating protein of p53) proteins associate with PP1 catalytic subunits and are implicated in multiple functions from transcriptional regulation to cell junction remodelling. Here we show that Drosophila ASPP is part of a multiprotein PP1 complex and that PP1 association is necessary for several in vivo functions of Drosophila ASPP. We solve the crystal structure of the human ASPP2/PP1 complex and show that ASPP2 recruits PP1 using both its canonical RVxF motif, which binds the PP1 catalytic domain, and its SH3 domain, which engages the PP1 C-terminal tail. The ASPP2 SH3 domain can discriminate between PP1 isoforms using an acidic specificity pocket in the n-Src domain, providing an exquisite mechanism where multiple motifs are used combinatorially to tune binding affinity to PP1. Serine/threonine phosphatases such as PP1 associate with a large array of subunit proteins, such as ASPP (apoptosis-stimulating protein of p53) to achieve selective targeting. Here authors solved the crystal structure of the human ASPP2/PP1 complex and explain how ASPP2 can distinguish between PP1 isoforms.
Interaction proteome of human Hippo signaling: modular control of the co‐activator YAP1
Tissue homeostasis is controlled by signaling systems that coordinate cell proliferation, cell growth and cell shape upon changes in the cellular environment. Deregulation of these processes is associated with human cancer and can occur at multiple levels of the underlying signaling systems. To gain an integrated view on signaling modules controlling tissue growth, we analyzed the interaction proteome of the human Hippo pathway, an established growth regulatory signaling system. The resulting high‐resolution network model of 480 protein‐protein interactions among 270 network components suggests participation of Hippo pathway components in three distinct modules that all converge on the transcriptional co‐activator YAP1. One of the modules corresponds to the canonical Hippo kinase cassette whereas the other two both contain Hippo components in complexes with cell polarity proteins. Quantitative proteomic data suggests that complex formation with cell polarity proteins is dynamic and depends on the integrity of cell‐cell contacts. Collectively, our systematic analysis greatly enhances our insights into the biochemical landscape underlying human Hippo signaling and emphasizes multifaceted roles of cell polarity complexes in Hippo‐mediated tissue growth control. Synopsis Systematic characterization of the human Hippo pathway protein interactome by quantitative mass spectrometry generates a high‐resolution network of 480 interactions among 270 proteins and reveals three major modules linked to the transcriptional coactivator YAP1. The interactome of human Hippo signaling provides a rich resource of high confidence protein interactions. Network topology revealed three major modules containing phosphatases, kinases and cell polarity proteins and converging at the transcriptional coactivator YAP1. A subset of protein phosphatase 1 complexes binds and activates YAP1. Cell‐cell contacts control YAP1 transcriptional activity as well as YAP1 complex formation with proteins linked to cell polarity. Graphical Abstract Systematic characterization of the human Hippo pathway protein interactome by quantitative mass spectrometry generates a high‐resolution network of 480 interactions among 270 proteins and reveals three major modules linked to the transcriptional coactivator YAP1.
Understanding the Half-Life Extension of Intravitreally Administered Antibodies Binding to Ocular Albumin
The burden associated with frequent injections of current intravitreal (IVT) therapeutics may be reduced by long-acting delivery strategies. Binding to serum albumin has been shown to extend the ocular half-life in rabbits, however, the underlying molecular mechanisms and translational relevance remain unclear. The aim of this work was to characterize the in vitro and in vivo formation of complexes between human serum albumin (HSA) and an antigen-binding fragment of a rabbit antibody linked to an anti-HSA nanobody (FabA). The ocular and systemic pharmacokinetics of 3H-labeled FabA (0.05 mg/eye IVT) co-formulated with HSA (1 and 15 nmol/eye) were assessed in Dutch belted rabbits. Next, FabA was incubated in vitreous samples from cynomolgus monkeys and human donors (healthy and diseased) supplemented with species-specific serum albumin. Finally, the FabA-albumin complexes formed in vitro and in vivo were analyzed by radio-size exclusion chromatography. A 3-fold increase in FabA vitreal exposure and half-life was observed in rabbits co-administered with 15 nmol HSA compared to 1 nmol and a control arm. The different pharmacokinetic behavior was explained with the formation of higher molecular weight FabA–albumin complexes. The analysis of vitreous samples revealed the existence of predominantly 1:1 complexes at endogenous or low concentrations of supplemented albumin. A shift towards 1:2 complexes was observed with increasing albumin concentrations. Overall, these results suggest that endogenous vitreal albumin concentrations are insufficient for half-life extension and warrant supplementation in the dosing formulation.
Meru couples planar cell polarity with apical-basal polarity during asymmetric cell division
Polarity is a shared feature of most cells. In epithelia, apical-basal polarity often coexists, and sometimes intersects with planar cell polarity (PCP), which orients cells in the epithelial plane. From a limited set of core building blocks (e.g. the Par complexes for apical-basal polarity and the Frizzled/Dishevelled complex for PCP), a diverse array of polarized cells and tissues are generated. This suggests the existence of little-studied tissue-specific factors that rewire the core polarity modules to the appropriate conformation. In Drosophila sensory organ precursors (SOPs), the core PCP components initiate the planar polarization of apical-basal determinants, ensuring asymmetric division into daughter cells of different fates. We show that Meru, a RASSF9/RASSF10 homologue, is expressed specifically in SOPs, recruited to the posterior cortex by Frizzled/Dishevelled, and in turn polarizes the apical-basal polarity factor Bazooka (Par3). Thus, Meru belongs to a class of proteins that act cell/tissue-specifically to remodel the core polarity machinery.