Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
215 result(s) for "Hawks, John"
Sort by:
The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa
New ages for flowstone, sediments and fossil bones from the Dinaledi Chamber are presented. We combined optically stimulated luminescence dating of sediments with U-Th and palaeomagnetic analyses of flowstones to establish that all sediments containing Homo naledi fossils can be allocated to a single stratigraphic entity (sub-unit 3b), interpreted to be deposited between 236 ka and 414 ka. This result has been confirmed independently by dating three H. naledi teeth with combined U-series and electron spin resonance (US-ESR) dating. Two dating scenarios for the fossils were tested by varying the assumed levels of 222Rn loss in the encasing sediments: a maximum age scenario provides an average age for the two least altered fossil teeth of 253 +82/–70 ka, whilst a minimum age scenario yields an average age of 200 +70/–61 ka. We consider the maximum age scenario to more closely reflect conditions in the cave, and therefore, the true age of the fossils. By combining the US-ESR maximum age estimate obtained from the teeth, with the U-Th age for the oldest flowstone overlying Homo naledi fossils, we have constrained the depositional age of Homo naledi to a period between 236 ka and 335 ka. These age results demonstrate that a morphologically primitive hominin, Homo naledi, survived into the later parts of the Pleistocene in Africa, and indicate a much younger age for the Homo naledi fossils than have previously been hypothesized based on their morphology. Species of ancient humans and the extinct relatives of our ancestors are typically described from a limited number of fossils. However, this was not the case with Homo naledi. More than 1500 fossils representing at least 15 individuals of this species were unearthed from the Rising Star cave system in South Africa between 2013 and 2014. Found deep underground in the Dinaledi Chamber, the H. naledi fossils are the largest collection of a single species of an ancient human-relative discovered in Africa. After the discovery was reported, a number of questions still remained. Not least among these questions was: how old were the fossils? The material was undated, and predictions ranged from anywhere between 2 million years old and 100,000 years old. H. naledi shared several traits with the most primitive of our ancient relatives, including its small brain. As a result, many scientists guessed that H. naledi was an old species in our family tree, and possibly one of the earliest species to evolve in the genus Homo. Now, Dirks et al. – who include many of the researchers who were involved in the discovery of H. naledi – report that the fossils are most likely between 236,000 and 335,000 years old. These dates are based on measuring the concentration of radioactive elements, and the damage caused by these elements (which accumulates over time), in three fossilized teeth, plus surrounding rock and sediments from the cave chamber. Importantly, the most crucial tests were carried out at independent laboratories around the world, and the scientists conducted the tests without knowing the results of the other laboratories. Dirks et al. took these extra steps to make sure that the results obtained were reproducible and unbiased. The estimated dates are much more recent than many had predicted, and mean that H. naledi was alive at the same time as the earliest members of our own species – which most likely evolved between 300,000 and 200,000 years ago. These new findings demonstrate why it can be unwise to try to predict the age of a fossil based only on its appearance, and emphasize the importance of dating specimens via independent tests. Finally in two related reports, Berger et al. suggest how a primitive-looking species like H. naledi survived more recently than many would have predicted, while Hawks et al. describe the discovery of more H. naledi fossils from a separate chamber in the same cave system.
The hand of Homo naledi
A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi . This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi . It is unclear to what extent early hominins were adapted to arboreal climbing. Here, the authors show that the nearly complete hand of H. naledi from South Africa has markedly curved digits and otherwise human-like wrist and palm, which indicates the retention of a significant degree of climbing.
Recent acceleration of human adaptive evolution
Genomic surveys in humans identify a large amount of recent positive selection. Using the 3.9-million HapMap SNP dataset, we found that selection has accelerated greatly during the last 40,000 years. We tested the null hypothesis that the observed age distribution of recent positively selected linkage blocks is consistent with a constant rate of adaptive substitution during human evolution. We show that a constant rate high enough to explain the number of recently selected variants would predict (i) site heterozygosity at least 10-fold lower than is observed in humans, (ii) a strong relationship of heterozygosity and local recombination rate, which is not observed in humans, (iii) an implausibly high number of adaptive substitutions between humans and chimpanzees, and (iv) nearly 100 times the observed number of high-frequency linkage disequilibrium blocks. Larger populations generate more new selected mutations, and we show the consistency of the observed data with the historical pattern of human population growth. We consider human demographic growth to be linked with past changes in human cultures and ecologies. Both processes have contributed to the extraordinarily rapid recent genetic evolution of our species.
Meaning-making behavior in a small-brained hominin, Homo naledi, from the late Pleistocene: contexts and evolutionary implications
Explorations in the Dinaledi Subsystem of the Rising Star cave system have yielded some of the earliest evidence of a mortuary practice in hominins. Because the evidence is attributable to the small-brained Homo naledi , these analyses call into question several assumptions about behavioral and cognitive evolution in Pleistocene hominins. The evidence from the Dinaledi Subsystem, and at other locations across the Rising Star cave system may widen the phylogenetic breadth of mortuary, and possibly funerary, behaviors. These discoveries may also associate the creation of meaning-making and increased behavioral complexity with a small-brained hominin species, challenging certain assertions about the role of encephalization and cognition in hominin and human evolution. We suggest that the hominin socio-cognitive niche is more diverse than previously thought. If true, technological, meaning-making activities, and cognitive advances in human evolution are not associated solely with the evolution of larger-brained members of the genus Homo .Evidence for complex behaviors associated with a small-brained hominin suggests that large brains are not solely responsible for the manifestation of human-like behavioral complexity.
Immature remains and the first partial skeleton of a juvenile Homo naledi, a late Middle Pleistocene hominin from South Africa
Immature remains are critical for understanding maturational processes in hominin species as well as for interpreting changes in ontogenetic development in hominin evolution. The study of these subjects is hindered by the fact that associated juvenile remains are extremely rare in the hominin fossil record. Here we describe an assemblage of immature remains of Homo naledi recovered from the 2013-2014 excavation season. From this assemblage, we attribute 16 postcranial elements and a partial mandible with some dentition to a single juvenile Homo naledi individual. The find includes postcranial elements never before discovered as immature elements in the sub-equatorial early hominin fossil record, and contributes new data to the field of hominin ontogeny.
Mandibular ramus morphology and species identification in Australopithecus sediba
The site of Malapa, South Africa, has produced fossil evidence from multiple individuals of Australopithecus sediba including the partial skeletons designated as MH1 (holotype) and MH2 (paratype). A recent article in this Journal presented the hypothesis that MH1 and MH2 are not one species but instead represent two different genera: Australopithecus and Homo, respectively. Here we briefly evaluate this claim. We review the evidence from across the skeleton that demonstrates that MH1 and MH2 represent a single species, and we highlight other fossil samples that show the same pattern of mandibular ramus variation as observed in MH1 and MH2. The evidence shows that there is no reason to separate MH1 and MH2 into different species or genera based upon mandibular ramus morphology. This case illustrates how misleading small fragments of anatomy can be, why researchers should not use such fragments particularly for species and genus-level diagnoses, and why it is essential to use all available evidence.
Homo naledi and Pleistocene hominin evolution in subequatorial Africa
New discoveries and dating of fossil remains from the Rising Star cave system, Cradle of Humankind, South Africa, have strong implications for our understanding of Pleistocene human evolution in Africa. Direct dating of Homo naledi fossils from the Dinaledi Chamber (Berger et al., 2015 ) shows that they were deposited between about 236 ka and 335 ka (Dirks et al., 2017 ), placing H. naledi in the later Middle Pleistocene. Hawks and colleagues (Hawks et al., 2017 ) report the discovery of a second chamber within the Rising Star system (Dirks et al., 2015 ) that contains H. naledi remains. Previously, only large-brained modern humans or their close relatives had been demonstrated to exist at this late time in Africa, but the fossil evidence for any hominins in subequatorial Africa was very sparse. It is now evident that a diversity of hominin lineages existed in this region, with some divergent lineages contributing DNA to living humans and at least H. naledi representing a survivor from the earliest stages of diversification within Homo. The existence of a diverse array of hominins in subequatorial comports with our present knowledge of diversity across other savanna-adapted species, as well as with palaeoclimate and paleoenvironmental data. H. naledi casts the fossil and archaeological records into a new light, as we cannot exclude that this lineage was responsible for the production of Acheulean or Middle Stone Age tool industries. Species of ancient humans and the extinct relatives of our ancestors are typically described from a limited number of fossils. However, this was not the case with Homo naledi. More than 1,500 fossils representing at least 15 individuals of this species were unearthed from the Rising Star cave system in South Africa between 2013 and 2014. Found deep underground in the Dinaledi Chamber, the H. naledi fossils are the largest collection of a single species of an ancient human-relative discovered in Africa. After the discovery was reported, a number of questions still remained. H. naledi had an unusual mix of ancient and modern traits. For example, it had a small brain like the most ancient of human-relatives, yet its wrists looked much like those of a modern human. This raised the question: where does H. naledi fit within the scheme of human evolution? Now, Berger et al.—who include many of the researchers who were involved in the discovery of H. naledi—reconsider this question in the light of new findings reported in two related studies. First, Dirks et al. provide a long-anticipated estimate for the age of the fossils at between 236,000 and 335,000 years old. Second, Hawks et al. report the discovery of more H. naledi fossils from a separate chamber in the same cave system. These estimated dates fall in a period called the late Middle Pleistocene, and mean that H. naledi possibly lived at the same time, and in the same place, as modern humans. Berger et al. explain that the existence of a relatively primitive species like H. naledi living this recently in southern Africa is at odds with previous thinking about human evolution. Indeed, all other members of our family tree known from the same time had large brains and were generally much more evolved than our most ancient relatives. However, Berger et al. argue that we have only an incomplete picture of our evolutionary past, and suggest that old fossils might have been assigned to the wrong species or time period. Reassessing the old fossils might lead the scientific community to rethink what kinds of human-relative were around in southern Africa at different times, and what those ancient species were capable of. For example, archeologists had previously thought that modern humans made all the stone tools dating from around the late Middle Pleistocene found in southern Africa, but now we must consider whether some of them could have been made by H. naledi.
Detecting Cochlear Synaptopathy Through Curvature Quantification of the Auditory Brainstem Response
The sound-evoked electrical compound potential known as auditory brainstem response (ABR) represents the firing of a heterogenous population of auditory neurons in response to sound stimuli, and is often used for clinical diagnosis based on wave amplitude and latency. However, recent ABR applications to detect human cochlear synaptopathy have led to inconsistent results, mainly due to the high variability of ABR wave-1 amplitude. Here, rather than focusing on the amplitude of ABR wave 1, we evaluated the use of ABR wave curvature to detect cochlear synaptic loss. We first compared four curvature quantification methods using simulated ABR waves, and identified that the cubic spline method using five data points produced the most accurate quantification. We next evaluated this quantification method with ABR data from an established mouse model with cochlear synaptopathy. The data clearly demonstrated that curvature measurement is more sensitive and consistent in identifying cochlear synaptic loss in mice compared to the amplitude and latency measurements. We further tested this curvature method in a different mouse model presenting with otitis media. The change in curvature profile due to middle ear infection in otitis media is different from the profile of mice with cochlear synaptopathy. Thus, our study suggests that curvature quantification can be used to address the current ABR variability issue, and may lead to additional applications in the clinic diagnosis of hearing disorders.
An initial report of circa 241,000- to 335,000-year-old rock engravings and their relation to Homo naledi in the Rising Star cave system, South Africa
The production of painted, etched, or engraved designs on cave walls or other surfaces is recognized as a major cognitive step in human evolution. Such intentional designs, which are widely interpreted as signifying, recording, and transmitting information in a durable manner, were once considered exclusive to Late Pleistocene Homo sapiens . Here we present observations of what appear to be engraved abstract patterns and shapes within the Dinaledi Subsystem of the Rising Star cave system in South Africa, incised into the dolomitic limestone walls of the cave. The markings described here are found on a pillar in the Hill Antechamber that extends into the natural fissure corridor that links the two chambers, and we associate them with Homo naledi . They include deeply impressed lines, cross-hatchings, percussion marks, and other geometric shapes on flat wall surfaces and in and around existing cracks and grooves in the dolomitic limestone walls, found in one specific location of the Dinaledi Subsystem. Remains of multiple H. naledi are found in this part of the cave system, and evidence of mortuary behavior appears in both the Dinaledi Chamber and adjacent Hill Antechamber dated to between 241 and 335 ka (Dirks et al., 2017; Robbins et al., 2021; Berger et al., 2025).