Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Hawwal, Mohammed F."
Sort by:
Cumin (Cuminum cyminum L.) seeds accelerates wound healing in rats: Possible molecular mechanisms
Wound healing is a complex, intricate, and dynamic process that requires effective therapeutic management. The current study evaluates the wound healing potentials of methanolic extract of Cuminum cyminum L. seeds (CCS) in rats. Sprague Dawley (24) rats were distributed into four cages, wounds produced on the back of the neck, and received two daily topical treatments for 14 days: A, rats received normal saline; B, wounded rats treated with intrasite gel; C and D, rats received 0.2 mL of 250 and 500 mg/kg of CCS, respectively. After that, wound area and closure percentage were evaluated, and wound tissues were dissected for histopathological, immunohistochemical, and biochemical examinations. Acute toxicity trials of methanolic extract of CCS showed the absence of any physiological changes or mortality in rats. CCS application caused a significant reduction in wound size and a statistically elevated percentage of wound contraction than those of vehicle rats. CCS treatment caused significant up-regulation of collagen fiber, fibroblasts, and fewer inflammatory cells (inflammation) in granulation tissues. TGF-β1 (angiogenetic factor) was significantly more expressed in CCS-treated rats in comparison to normal saline-treated rats; therefore, more fibroblasts transformed into myofibroblasts (angiogenesis). CCS-treated rats showed remarkable antioxidant potentials (higher SOD and CAT enzymes) and decreased MDA (lipid peroxidation) levels in their wound tissue homogenates. Hydroxyproline amino acid (collagen) was significantly up-regulated by CCS treatment, which is commonly related to faster wound closure area. The outcomes suggest CCS as a viable new source of pharmaceuticals for wound treatment.
Anticancer Effect of Cycas media: Molecular Basis Through Modulation of PI3K/AKT/mTOR Signaling Pathway
Many researchers are focusing on screening the biological activities of plants owing to their safety and possible pharmacological actions. Consequently, we aimed to explore the antiproliferative and cytotoxic properties of Cycas media methanolic extract on HepG2 cell lines. Moreover, we also explore the antitumor action against the experimentally induced solid Ehrlich carcinoma (SEC) model and investigate the possible involved molecular mechanisms. Also, the antibacterial action of the extract was elucidated. Different concentrations of the extract were incubated with HepG2 to determine cytotoxicity, followed by cell cycle analysis. The in vivo experiment was accomplished by grouping the animals into four different groups (n = 10); normal control, SEC, C. media 100, and C. media 200. The extract was administered at 100 and 200 mg/kg. Tumor volume, tumor inhibition rate, toxicity profile, and antioxidant biomarkers were determined. Moreover, the PI3K/AKT/mTOR signaling pathway was investigated as a possible underlying antitumor mechanism. The tumor control group showed a remarkable upregulation for PI3K, p-AKT, and p-mTOR, along with downregulation for the antioxidant SOD and GPX4, as well as decreased levels of GSH and MDA. C. media extract reversed these parameters to a significant level and the higher dose showed a superior antitumor effect. C. media extract showed antiproliferative effects against HepG2 cells, along with a suppressive action on the PI3K/AKT/mTOR pathway and an antioxidant effect. Additionally, C. media had antibacterial consequences against S. aureus isolates with minimum inhibitory concentrations from 32 to 128 µg/mL. It also caused a noteworthy growth delay as well as a notable reduction in the membrane integrity of S. aureus isolates. These beneficial outcomes suggest C. media to have potential antitumor and antibacterial activities.
Physicochemical Characterization of Moroccan Honey Varieties from the Fez-Meknes Region and Their Antioxidant and Antibacterial Properties
Honey, with its varied and extensive characteristics, is a complex and diverse biological substance that has been used since ancient times. The aim of this study is to thoroughly characterize the physicochemical, phytochemical, and biological properties of four floral honey varieties from the Fez-Meknes region in Morocco, with the goal of promoting the valorization of Moroccan honey in skincare and cosmetic products. The analyses of their physicochemical characteristics encompass various parameters such as pH, acidity, density, water content, Brix index, conductivity, ash content, hydroxymethylfurfural (HMF) content, and color. The levels of polyphenols range from 22.1 ± 0.4 to 69.3 ± 0.17 mg GAE/100 g of honey, measured using the Folin–Ciocalteu method for polyphenol quantification. Additionally, the estimation of flavonoid quantities in 100 g of honey, conducted using the aluminum trichloride method, reveals values ranging from 3.6 ± 0.2 to 7.2 ± 0.6 mg QE. Furthermore, it is noteworthy that honey exhibits high levels of glucose and relatively low concentrations of proteins. The quantitative evaluation of antioxidant effects, carried out through the 2,2-diphenyl-1-picrylhydrazyl free-radical-scavenging method and the ferric-reducing antioxidant power (FRAP) method, highlights the strong antioxidant capacity of multifloral honey, characterized by low inhibitory concentration values (IC50 = 30.43 mg/mL and EC50 = 16.06 mg/mL). Moreover, all honey varieties demonstrate antibacterial and antifungal properties, with multifloral honey standing out for its particularly pronounced antimicrobial activity. The correlation analyses between phytochemical composition and antioxidant and antibacterial activities reveal an inverse relationship between polyphenols and IC50 (DPPH) and EC50 (FRAP) concentrations of honey. The correlation coefficients are established at R2 = −0.97 and R2 = −0.99, respectively. Additionally, a significant negative correlation is observed between polyphenols, flavonoids, and antifungal power (R2 = −0.95 and R2 = −0.96). In parallel, a marked positive correlation is highlighted between antifungal efficacy, DPPH antioxidant activity (R2 = 0.95), and FRAP (R2 = 0.92). These results underscore the crucial importance of phytochemical components in the beneficial properties of honey, meeting international quality standards. Consequently, honey could serve as a natural alternative to synthetic additives.
(E)-2,6,10-Trimethyldodec-8-en-2-ol: An Undescribed Sesquiterpenoid from Copaiba Oil
The use of copaiba oil has been reported since the 16th century in Amazon traditional medicine, especially as an anti-inflammatory ingredient and for wound healing. The use of copaiba oil continues today, and it is sold in various parts of the world, including the United States. Copaiba oil contains mainly sesquiterpenes, bioactive compounds that are popular for their positive effect on human health. As part of our ongoing research endeavors to identify the chemical constituents of broadly consumed herbal supplements or their adulterants, copaiba oil was investigated. In this regard, copaiba oil was subjected to repeated silica gel column chromatography to purify the compounds. As a result, one new and seven known sesquiterpenes/sesquiterpenoids were isolated and identified from the copaiba oil. The new compound was elucidated as (E)-2,6,10-trimethyldodec-8-en-2-ol. Structure elucidation was achieved by 1D- and 2D NMR and GC/Q-ToF mass spectral data analyses. The isolated chemical constituents in this study could be used as chemical markers to evaluate the safety or quality of copaiba oil.
Chemical Characterization and Quality Assessment of Copaiba Oil-Resin Using GC/MS and SFC/MS
In recent years, the popularity of copaiba oil-resin has increased worldwide due to its medicinal value and wide applications in industry. Despite its popularity, the oil has not been standardized by industry or regulatory agencies. Product adulteration in order to maximize profits has become a problem. To address these issues, the current study describes the chemical and chemometric characterization of forty copaiba oil-resin samples by GC/MS. The results demonstrated, with the exception of commercial samples, that all sample groups contained six characteristic compounds (β-caryophyllene, α-copaene, trans-α-bergamotene, α-humulene, γ-muurolene, and β-bisabolene) in varying concentrations. Furthermore, compositional patterns were observed in individual groups which corresponded to sample origin. Within the commercial group, two samples did not contain or contained only one of the characteristic compounds. Principal component analysis (PCA) revealed distinct groups which largely corresponded to sample origin. Moreover, commercial samples were detected by PCA as outliers, and formed a group far removed from the other samples. These samples were further subjected to analysis using a SFC/MS method. Product adulteration with soybean oil was clearly detected, with each individual triglyceride in soybean oil being unambiguously identified. By combining these analytical techniques, the overall quality of copaiba oil-resin can be assessed.
Optimized formulation of a three-component extract mixture from Moroccan Crocus sativus L. (Stigmas, leaves, and Tepals) for enhanced antioxidant activity
This study evaluated the antioxidant potential of a three-component mixture derived from Crocus sativus L. stigmas, leaves, and tepals, aiming to valorize these underutilized by-products. Hydroethanolic extracts were chemically profiled using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD), identifying major bioactive compounds including crocin (11.04%), rutin (22.32%), and ellagic acid (62.47%). Antioxidant capacity was assessed using DPPH and ABTS assays, yielding IC 50 values ranging from 88.67 ± 0.83 µ g/mL to 291.41 ± 0.91 µ g/mL for DPPH, and from 116.76 ± 1.31 µ g/mL to 286.87 ± 0.25 µ g/mL for ABTS. A simplex-centroid mixture design was employed to determine optimal component ratios. The best-performing DPPH mixture (43% stigmas, 35% leaves, 22% tepals) achieved an IC 50 of 97.36 ± 1.23 µ g/mL, closely matching the predicted 95.96 µ g/mL. Similarly, the optimal ABTS blend (45% stigmas, 35% leaves, 20% tepals) reached an IC 50 of 110.59 ± 6.82 µ g/mL, aligning with the predicted 106.31 µ g/mL. Both combinations outperformed standard antioxidants like BHT and ascorbic acid. These findings support the synergistic use of saffron by-products in food preservation, nutraceuticals, and biopharmaceuticals, offering an eco-friendly, cost-effective solution aligned with circular economy principles. Graphical Abstract
Chemical Fingerprinting Profile and Targeted Quantitative Analysis of Phenolic Compounds from Rooibos Tea (Aspalathus linearis) and Dietary Supplements Using UHPLC-PDA-MS
Aspalathus linearis (Burm.f.) R. Dahlgren, commonly known as rooibos tea, was consumed traditionally by the indigenous South African inhabitants as an herbal remedy. Beside antioxidant properties, it displays antiallergic, antispasmodic, and hypoglycemic activities. An ultra-high-performance liquid chromatography method coupled with photodiode array and mass spectrometry detectors were developed for the determination of 14 phenolic constituents from leaves and stems of A. linearis. The efficient separation was performed within 30 min at a temperature of 30 °C by using C-18 column as the stationary phase and water/acetonitrile with 0.05% formic acid as the mobile phase. Method validation for linearity, repeatability, limits of detection, and limits of quantification was achieved. The limits of detection from 0.2–1 μg/mL were reported for the standard compounds. Their total content varied substantially (1.50–9.85 mg/100 mg sample) in 21 dietary supplements. The presence of regioisomers and diastereomers which co-elute on a variety of stationary phases make separation for quantification purposes challenging. This method was found to be efficient in providing low retention times and excellent resolution for this type of phytochemicals. The established method is suitable for chemical fingerprint analysis of A. linearis and cost-effective for quality control of rooibos tea products.
Revisiting the Flora of Saudi Arabia: Phytochemical and Biological Investigation of the Endangered Plant Species Euphorbia saudiarabica
Euphorbia plants have a significant place in traditional medicine due to their numerous therapeutic properties, including their anti-tumor effects, which have been observed in several species. In the current study, a phytochemical investigation of Euphorbia saudiarabica methanolic extract led to the isolation and characterization of four secondary metabolites from the chloroform (CHCl3) and ethyl acetate (EtOAc) fractions, which are reported for the first time in this species. One of the constituents, saudiarabicain F (2), is a rare C-19 oxidized ingol-type diterpenoid that has not been previously reported. The structures of these compounds were determined by extensive spectroscopic (HR-ESI-MS, 1D and 2D NMR) analyses. The anticancer properties of the E. saudiarabica crude extract, its fractions and its isolated compounds were examined against several cancer cells. The active fractions were evaluated for their effects on cell-cycle progression and apoptosis induction using flow cytometry. Furthermore, RT-PCR was employed to estimate the gene-expression levels of the apoptosis-related genes. It was demonstrated that the E. saudiarabica CHCl3 and EtOAc fractions suppressed the proliferation of the cancer cells. The MCF-7 cells were the most sensitive to both fractions, with IC50 values of 22.6 and 23.2 µg/mL, respectively. Notably, both fractions caused cell-cycle arrest in the G2/M phase of the treated MCF-7 cells. The inhibition of the MCF-7 cells’ proliferation was also linked with apoptosis induction by flow-cytometry analysis. Additionally, the activation of apoptosis by both fractions was demonstrated by an increase in the ratio of Bax to Bcl-2, with an increase in the expression of caspase-7. Among the isolated compounds, glutinol (1) showed potent activity against the MCF-7 cell line, with an IC50 value of 9.83 µg/mL. Our findings suggest that E. saudiarabica has apoptosis-inducing effects and shows promise as a potential source of new chemotherapeutic drugs.
Concurrent Optimization of Ultrasonic-Assisted Extraction of Total Phenolic Compounds and In Vitro Anticancer and Antioxidant Potential of Pulicaria schimperi (Aerial Parts) Using Response Surface Methodology
This study aimed to maximize the dependent variables [total phenolic content (TPC), antioxidant (DPPH and ABTS), and anticancer activities (against HepG2 and MCF-7 cells)] from P. schimperi aerial parts by optimizing three independent variables (extraction temperature, extraction time, and liquid-to-solid ratio) of ultrasound-assisted extraction (UAE) using the Box–Behnken design (BBD) of response surface methodology (RSM). For each of the dependent variables, the projected quadratic models were found to be very significant (p < 0.001). The extraction temperature and extraction time had a significant impact on the TPC extraction, antioxidant, and anticancer properties (p < 0.05). The best conditions were identified as an extraction temperature of 54.4 °C, extraction time of 48 min, and liquid-to-solid ratios of 20.72 mL/g for the simultaneous extraction of the TPC, antioxidant, and anticancer properties of P. schimperi. The experimental results and the expected values agreed under these circumstances. Regarding the high extraction effectiveness and antioxidant and anticancer effects at comparably low extraction temperature and duration, UAE demonstrated considerable benefits over conventional solvent extraction (CSE). This improved UAE approach has shown a potential use for effective polyphenolic antioxidant extraction from P. schimperi aerial parts in the nutraceutical sectors.
Persimmon (Diospyros kaki L.) leaves accelerates skin tissue regeneration in excisional wound model: possible molecular mechanisms
Persimmon ( Diospyros kaki L.) leaves are a traditional medicinal herb used for treating many infectious and inflammatory-related conditions, including wound healing. To validate its traditional use, our study evaluates the acute toxicity and wound-healing effects of methanolic extracts of Persimmon ( Diospyros kaki L.) leaves (MEPL) on excisional neck injury in rats. A uniform dorsal neck injury was created for twenty-four Sprague Dawley rats, which were randomly aligned into 4 groups and treated topically twice daily with 0.2 ml of the following: group A, rats treated with 1% CMC; group B, rats received intrasite gel; groups C and D, rats treated with MEPL (0.2 ml of 250 and 500 mg/kg, respectively). The toxicity results showed a lack of physiologic alteration or mortality in rats ingested with an oral dosage of up to 5 g/kg of MEPL. Histological screening of regenerated skin tissues revealed higher deposition of collagen, fibroblast cells, and reduced inflammatory cells in MEPL-treated rats. The topical application of MEPL led to positive modulation of Transforming Growth Factor Beta 1 (angiogenetic factor) in wound tissues, indicating increased tissue regeneration and faster wound contraction. MEPL treatment caused a significant elevation of tissue antioxidants (superoxide dismutase and catalase) and hydroxyproline (collagen) contents while reducing malondialdehyde contents. The inflammatory mediators (TNF-α and IL-6) were lower, and anti-inflammatory cytokines (interleukin 10) were higher in MEPL-treated rats than in the vehicle group. The study outcomes back up the traditional use of MEPL for wound healing, which could be linked with its phytochemicals (flavonoids and terpenoids) that require further isolation and molecular identification.