Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
398
result(s) for
"He, Shaomei"
Sort by:
Comparative Metagenomic and Metatranscriptomic Analysis of Hindgut Paunch Microbiota in Wood- and Dung-Feeding Higher Termites
by
He, Shaomei
,
Scheffrahn, Rudolf H.
,
Kyrpides, Nikos C.
in
Amitermes wheeleri
,
Analysis
,
Animals
2013
Termites effectively feed on many types of lignocellulose assisted by their gut microbial symbionts. To better understand the microbial decomposition of biomass with varied chemical profiles, it is important to determine whether termites harbor different microbial symbionts with specialized functionalities geared toward different feeding regimens. In this study, we compared the microbiota in the hindgut paunch of Amitermes wheeleri collected from cow dung and Nasutitermes corniger feeding on sound wood by 16S rRNA pyrotag, comparative metagenomic and metatranscriptomic analyses. We found that Firmicutes and Spirochaetes were the most abundant phyla in A. wheeleri, in contrast to N. corniger where Spirochaetes and Fibrobacteres dominated. Despite this community divergence, a convergence was observed for functions essential to termite biology including hydrolytic enzymes, homoacetogenesis and cell motility and chemotaxis. Overrepresented functions in A. wheeleri relative to N. corniger microbiota included hemicellulose breakdown and fixed-nitrogen utilization. By contrast, glycoside hydrolases attacking celluloses and nitrogen fixation genes were overrepresented in N. corniger microbiota. These observations are consistent with dietary differences in carbohydrate composition and nutrient contents, but may also reflect the phylogenetic difference between the hosts.
Journal Article
Comparative genomics of two ‘Candidatus Accumulibacter’ clades performing biological phosphorus removal
by
He, Shaomei
,
Malfatti, Stephanie
,
Tringe, Susannah G
in
631/208/212/2306
,
631/208/212/748
,
631/326/2565/855
2013
Members of the genus
Candidatus
Accumulibacter are important in many wastewater treatment systems performing enhanced biological phosphorus removal (EBPR). The Accumulibacter lineage can be subdivided phylogenetically into multiple clades, and previous work showed that these clades are ecologically distinct. The complete genome of
Candidatus
Accumulibacter phosphatis strain UW-1, a member of Clade IIA, was previously sequenced. Here, we report a draft genome sequence of
Candidatus
Accumulibacter spp. strain UW-2, a member of Clade IA, assembled following shotgun metagenomic sequencing of laboratory-scale bioreactor sludge. We estimate the genome to be 80–90% complete. Although the two clades share 16S rRNA sequence identity of >98.0%, we observed a remarkable lack of synteny between the two genomes. We identified 2317 genes shared between the two genomes, with an average nucleotide identity (ANI) of 78.3%, and accounting for 49% of genes in the UW-1 genome. Unlike UW-1, the UW-2 genome seemed to lack genes for nitrogen fixation and carbon fixation. Despite these differences, metabolic genes essential for denitrification and EBPR, including carbon storage polymer and polyphosphate metabolism, were conserved in both genomes. The ANI from genes associated with EBPR was statistically higher than that from genes not associated with EBPR, indicating a high selective pressure in EBPR systems. Further, we identified genomic islands of foreign origins including a near-complete lysogenic phage in the Clade IA genome. Interestingly, Clade IA appeared to be more phage susceptible based on it containing only a single Clustered Regularly Interspaced Short Palindromic Repeats locus as compared with the two found in Clade IIA. Overall, the comparative analysis provided a genetic basis to understand physiological differences and ecological niches of Accumulibacter populations, and highlights the importance of diversity in maintaining system functional resilience.
Journal Article
Microbiology of 'Candidatus Accumulibacter' in activated sludge
by
He, Shaomei
,
McMahon, Katherine D.
in
Activated sludge
,
Bacteria
,
Bacterial Proteins - genetics
2011
Summary ‘Candidatus Accumulibacter’ is a biotechnologically important bacterial group that can accumulate large amounts of intracellular polyphosphate, contributing to biological phosphorus removal in wastewater treatment. Since its first molecular identification more than a decade ago, this bacterial group has drawn significant research attention due to its high abundance in many biological phosphorus removal systems. In the past 6 years, our understanding of Accumulibacter microbiology and ecophysiology has advanced rapidly, largely owing to genomic information obtained through shotgun metagenomic sequencing efforts. In this review, we focus on the metabolism, physiology, fine‐scale population structure and ecological distribution of Accumulibacter, aiming to integrate the information learned so far and to present a more complete picture of the microbiology of this important bacterial group.
Journal Article
Ecophysiology of Freshwater Verrucomicrobia Inferred from Metagenome-Assembled Genomes
by
He, Shaomei
,
Chan, Leong-Keat
,
Tringe, Susannah G.
in
BASIC BIOLOGICAL SCIENCES
,
cytochromes
,
freshwater
2017
Freshwater Verrucomicrobia spp. are cosmopolitan in lakes and rivers, and yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia spp. are restricted to one subdivision of this phylum. Here, we greatly expanded the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent the first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia to be potential (poly)saccharide degraders and suggested their adaptation to carbon sources of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called “ Planctomycete -specific” cytochrome c -encoding genes and identified their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology, and distribution of freshwater Verrucomicrobia , while highlighting their potential role in freshwater carbon cycling. Microbes are critical in carbon and nutrient cycling in freshwater ecosystems. Members of the Verrucomicrobia are ubiquitous in such systems, and yet their roles and ecophysiology are not well understood. In this study, we recovered 19 Verrucomicrobia draft genomes by sequencing 184 time-series metagenomes from a eutrophic lake and a humic bog that differ in carbon source and nutrient availabilities. These genomes span four of the seven previously defined Verrucomicrobia subdivisions and greatly expand knowledge of the genomic diversity of freshwater Verrucomicrobia . Genome analysis revealed their potential role as (poly)saccharide degraders in freshwater, uncovered interesting genomic features for this lifestyle, and suggested their adaptation to nutrient availabilities in their environments. Verrucomicrobia populations differ significantly between the two lakes in glycoside hydrolase gene abundance and functional profiles, reflecting the autochthonous and terrestrially derived allochthonous carbon sources of the two ecosystems, respectively. Interestingly, a number of genomes recovered from the bog contained gene clusters that potentially encode a novel porin-multiheme cytochrome c complex and might be involved in extracellular electron transfer in the anoxic humus-rich environment. Notably, most epilimnion genomes have large numbers of so-called “ Planctomycete -specific” cytochrome c -encoding genes, which exhibited distribution patterns nearly opposite to those seen with glycoside hydrolase genes, probably associated with the different levels of environmental oxygen availability and carbohydrate complexity between lakes/layers. Overall, the recovered genomes represent a major step toward understanding the role, ecophysiology, and distribution of Verrucomicrobia in freshwater. IMPORTANCE Freshwater Verrucomicrobia spp. are cosmopolitan in lakes and rivers, and yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia spp. are restricted to one subdivision of this phylum. Here, we greatly expanded the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent the first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia to be potential (poly)saccharide degraders and suggested their adaptation to carbon sources of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called “ Planctomycete -specific” cytochrome c -encoding genes and identified their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology, and distribution of freshwater Verrucomicrobia , while highlighting their potential role in freshwater carbon cycling.
Journal Article
Systematic gene therapy derived from an investigative study of AAV2/8 vector gene therapy for Fabry disease
by
He, Shaomei
,
Li, Fanghong
,
Qiu, Haoheng
in
Adeno-associated viral 2/8 (AAV2/8)
,
Analysis
,
Care and treatment
2023
Background
Fabry disease (FD) is a progressive multisystemic disease characterized by a lysosomal enzyme deficiency. A lack of α-galactosidase A (α-Gal A) activity results in the progressive systemic accumulation of its substrates, including globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), which results in renal, cardiac, and/or cerebrovascular disease and early death. Enzyme replacement therapy (ERT) is the current standard of care for FD; however, it has important limitations, including a low half-life, limited distribution, and requirement of lifelong biweekly infusions of recombinant enzymes.
Methods
Herein, we evaluated a gene therapy approach using an episomal adeno-associated viral 2/8 (AAV2/8) vector that encodes the human
GLA
cDNA driven by a liver-specific expression cassette in a mouse model of FD that lacks α-Gal A activity and progressively accumulates Gb3 and Lyso-Gb3 in plasma and tissues.
Results
A pharmacology and toxicology study showed that administration of AAV2/8-hGLA vectors (AAV2/8-hGLA) in FD mice without immunosuppression resulted in significantly increased plasma and tissue α-Gal A activity and substantially normalized Gb3 and Lyso-Gb3 content.
Conclusions
Moreover, the plasma enzymatic activity of α-Gal A continued to be stably expressed for up to 38 weeks and sometimes even longer, indicating that AAV2/8-hGLA is effective in treating FD mice, and that α-Gal A is continuously and highly expressed in the liver, secreted into plasma, and absorbed by various tissues. These findings provide a basis for the clinical development of AAV2/8-hGLA.
Journal Article
Perceived social support and diet quality among ethnic minority groups in Yunnan Province, Southwestern China: a cross-sectional study
2021
Background
Social support is an important health determinant and may affect dietary behaviors. The purpose of this study was to examine the relations between perceived social support and the Chinese Diet Balance Index-16 (DBI-16) among ethnic minority groups in Southwest China.
Methods
This cross-sectional study was conducted between May 2019 and August 2020 among six ethnic minority groups native to Yunnan Province (
n
= 3564). Perceived social support from family, friends and significant others were measured with the Multi-dimensional Scale of Perceived Social Support (MSPSS). Dietary data were obtained using a 100-item Food Frequency Questionnaire (FFQ) and a lifestyle questionnaire. Lower Bound Score (LBS), Higher Bound Score (HBS) and Diet Quality Distance (DQD) which represent inadequate, excessive and unbalanced food intake respectively were calculated to measure the compliance with the recommendations of the Dietary Guidelines for Chinese 2016.
Results
One thousand four hundred ninety-six men and two thousand sixty-eight women were included. 51.2% of the subjects had moderate or high levels of inadequate intake; 21.3% had moderate or high levels of excessive intake; and 74.0% had moderate or high levels of unbalanced dietary intake. With potential confounders adjusted, support from family was negatively associated with inadequate intake, while support from friends was positively associated with inadequate and excessive intake. No significant associations were found between perceived social support from significant others and diet quality indicators.
Conclusions
An unbalanced diet is common among adults of the ethnic minority groups in Yunnan Province, Southwest China. Social support should be taken into account in designing nutrition interventions rather than focusing solely on individuals.
Journal Article
Validation of two ribosomal RNA removal methods for microbial metatranscriptomics
by
He, Shaomei
,
Wurtzel, Omri
,
Lindquist, Erika A
in
631/1647/514/2254
,
631/208/212/2019
,
631/45/500
2010
Compared in this Analysis are two widely used procedures for ribosomal RNA removal in metatranscriptomic samples, and the authors present recommendations to prevent misleading analyses of microbial communities.
The predominance of rRNAs in the transcriptome is a major technical challenge in sequence-based analysis of cDNAs from microbial isolates and communities. Several approaches have been applied to deplete rRNAs from (meta)transcriptomes, but no systematic investigation of potential biases introduced by any of these approaches has been reported. Here we validated the effectiveness and fidelity of the two most commonly used approaches, subtractive hybridization and exonuclease digestion, as well as combinations of these treatments, on two synthetic five-microorganism metatranscriptomes using massively parallel sequencing. We found that the effectiveness of rRNA removal was a function of community composition and RNA integrity for these treatments. Subtractive hybridization alone introduced the least bias in relative transcript abundance, whereas exonuclease and in particular combined treatments greatly compromised mRNA abundance fidelity. Illumina sequencing itself also can compromise quantitative data analysis by introducing a G+C bias between runs.
Journal Article
Patterns in Wetland Microbial Community Composition and Functional Gene Repertoire Associated with Methane Emissions
by
Anderson, Frank E.
,
Windham-Myers, Lisamarie
,
He, Shaomei
in
Archaea
,
Archaea - classification
,
Archaea - genetics
2015
Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhouse gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. IMPORTANCE Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities that mediate carbon cycling in wetlands is critical to accurately predicting their responses to changes in land management and climate. Here, we studied a restored wetland and revealed substantial spatial heterogeneity in biogeochemistry, methane production, and microbial communities, largely associated with the wetland hydraulic design. We observed patterns in microbial community composition and functions correlated with biogeochemistry and methane production, including diverse microorganisms involved in methane production and consumption. We found that methanogenesis gene abundance is inversely correlated with genes from pathways exploiting other electron acceptors, yet the ubiquitous presence of genes from all these pathways suggests that diverse electron acceptors contribute to the energetic balance of the ecosystem. These investigations represent an important step toward effective management of wetlands to reduce methane flux to the atmosphere and enhance belowground carbon storage. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities that mediate carbon cycling in wetlands is critical to accurately predicting their responses to changes in land management and climate. Here, we studied a restored wetland and revealed substantial spatial heterogeneity in biogeochemistry, methane production, and microbial communities, largely associated with the wetland hydraulic design. We observed patterns in microbial community composition and functions correlated with biogeochemistry and methane production, including diverse microorganisms involved in methane production and consumption. We found that methanogenesis gene abundance is inversely correlated with genes from pathways exploiting other electron acceptors, yet the ubiquitous presence of genes from all these pathways suggests that diverse electron acceptors contribute to the energetic balance of the ecosystem. These investigations represent an important step toward effective management of wetlands to reduce methane flux to the atmosphere and enhance belowground carbon storage.
Journal Article
Freshwater carbon and nutrient cycles revealed through reconstructed population genomes
by
Stevens, Sarah L.R.
,
He, Shaomei
,
Bertilsson, Stefan
in
Analysis
,
Bacteria
,
BASIC BIOLOGICAL SCIENCES
2018
Although microbes mediate much of the biogeochemical cycling in freshwater, the categories of carbon and nutrients currently used in models of freshwater biogeochemical cycling are too broad to be relevant on a microbial scale. One way to improve these models is to incorporate microbial data. Here, we analyze both genes and genomes from three metagenomic time series and propose specific roles for microbial taxa in freshwater biogeochemical cycles. Our metagenomic time series span multiple years and originate from a eutrophic lake (Lake Mendota) and a humic lake (Trout Bog Lake) with contrasting water chemistry. Our analysis highlights the role of polyamines in the nitrogen cycle, the diversity of diazotrophs between lake types, the balance of assimilatory vs. dissimilatory sulfate reduction in freshwater, the various associations between types of phototrophy and carbon fixation, and the density and diversity of glycoside hydrolases in freshwater microbes. We also investigated aspects of central metabolism such as hydrogen metabolism, oxidative phosphorylation, methylotrophy, and sugar degradation. Finally, by analyzing the dynamics over time in nitrogen fixation genes and Cyanobacteria genomes, we show that the potential for nitrogen fixation is linked to specific populations in Lake Mendota. This work represents an important step towards incorporating microbial data into ecosystem models and provides a better understanding of how microbes may participate in freshwater biogeochemical cycling.
Journal Article
Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities
by
He, Shaomei
,
Shapiro, Harris J
,
Martín, Héctor García
in
Adaptation, Biological
,
Agriculture
,
Betaproteobacteria - genetics
2006
Enhanced biological phosphorus removal (EBPR) is one of the best-studied microbially mediated industrial processes because of its ecological and economic relevance. Despite this, it is not well understood at the metabolic level. Here we present a metagenomic analysis of two lab-scale EBPR sludges dominated by the uncultured bacterium, “
Candidatus
Accumulibacter phosphatis.” The analysis sheds light on several controversies in EBPR metabolic models and provides hypotheses explaining the dominance of
A. phosphatis
in this habitat, its lifestyle outside EBPR and probable cultivation requirements. Comparison of the same species from different EBPR sludges highlights recent evolutionary dynamics in the
A. phosphatis
genome that could be linked to mechanisms for environmental adaptation. In spite of an apparent lack of phylogenetic overlap in the flanking communities of the two sludges studied, common functional themes were found, at least one of them complementary to the inferred metabolism of the dominant organism. The present study provides a much needed blueprint for a systems-level understanding of EBPR and illustrates that metagenomics enables detailed, often novel, insights into even well-studied biological systems.
Journal Article