Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,835 result(s) for "He, Shi-Wei"
Sort by:
TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models
Although radiotherapy can promote antitumour immunity, the mechanisms underlying this phenomenon remain unclear. Here, we demonstrate that the expression of the E3 ubiquitin ligase, tumour cell-intrinsic tripartite motif-containing 21 (TRIM21) in tumours, is inversely associated with the response to radiation and CD8 + T cell-mediated antitumour immunity in nasopharyngeal carcinoma (NPC). Knockout of TRIM21 modulates the cGAS/STING cytosolic DNA sensing pathway, potentiates the antigen-presenting capacity of NPC cells, and activates cytotoxic T cell-mediated antitumour immunity in response to radiation. Mechanistically, TRIM21 promotes the degradation of the mitochondrial voltage-dependent anion-selective channel protein 2 (VDAC2) via K48-linked ubiquitination, which inhibits pore formation by VDAC2 oligomers for mitochondrial DNA (mtDNA) release, thereby inhibiting type-I interferon responses following radiation exposure. In patients with NPC, high TRIM21 expression was associated with poor prognosis and early tumour relapse after radiotherapy. Our findings reveal a critical role of TRIM21 in radiation-induced antitumour immunity, providing potential targets for improving the efficacy of radiotherapy in patients with NPC. The molecular mechanisms determining the response to radiotherapy remain incompletely understood. Here, the authors demonstrate that the E3 ubiquitin ligase and intracellular Fc receptor, TRIM21, impairs CD8 + T cell responses in nasopharyngeal carcinoma tumour models following ionizing radiation.
AR-induced long non-coding RNA LINC01503 facilitates proliferation and metastasis via the SFPQ-FOSL1 axis in nasopharyngeal carcinoma
Increasing evidence indicates that long non-coding RNAs (lncRNAs) play vital roles in the tumorigenesis and progression of cancers. However, the functions and regulatory mechanisms of lncRNAs in nasopharyngeal carcinoma (NPC) are still largely unknown. Our previous lncRNA expression profiles identified that LINC01503 was overexpressed in NPC. Here, we verified that LINC01503 was highly expressed in NPC and correlated with poor prognosis. LINC01503 promoted NPC cell proliferation, migration, and invasion in vitro, and facilitated tumor growth and metastasis in vivo. Mechanistically, LINC01503 recruited splicing factor proline-and glutamine-rich (SFPQ) to activate Fos like 1 (FOSL1) transcription, and ectopic expression of FOSL1 reversed the suppressive effect of LINC01503 knockdown on NPC progression. Moreover, androgen receptor (AR)-mediated transcription activation was responsible for the overexpression of LINC01503, and AR ligand-dependent cell growth, migration, and invasion in NPC cells. Taken together, our findings reveal that AR-induced LINC01503 can promote NPC progression through the SFPQ-FOSL1 axis, which represents a novel prognostic biomarker and therapeutic target for NPC patients.
The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment
Gemcitabine plus cisplatin (GP) chemotherapy is the standard of care for nasopharyngeal carcinoma (NPC). However, the mechanisms underpinning its clinical activity are unclear. Here, using single-cell RNA sequencing and T cell and B cell receptor sequencing of matched, treatment-naive and post-GP chemotherapy NPC samples ( n  = 15 pairs), we show that GP chemotherapy activated an innate-like B cell (ILB)-dominant antitumor immune response. DNA fragments induced by chemotherapy activated the STING type-I-interferon-dependent pathway to increase major histocompatibility complex class I expression in cancer cells, and simultaneously induced ILB via Toll-like receptor 9 signaling. ILB further expanded follicular helper and helper type 1 T cells via the ICOSL–ICOS axis and subsequently enhanced cytotoxic T cells in tertiary lymphoid organ-like structures after chemotherapy that were deficient for germinal centers. ILB frequency was positively associated with overall and disease-free survival in a phase 3 trial of patients with NPC receiving GP chemotherapy ( NCT01872962 , n  = 139). It also served as a predictor for favorable outcomes in patients with NPC treated with GP and immunotherapy combined treatment ( n  = 380). Collectively, our study provides a high-resolution map of the tumor immune microenvironment after GP chemotherapy and uncovers a role for B cell-centered antitumor immunity. We also identify and validate ILB as a potential biomarker for GP-based treatment in NPC, which could improve patient management. Analysis of tumor samples from patients with nasopharyngeal carcinoma shows that gemcitabine plus cisplatin chemotherapy activates a unique population of innate-like B cells, which enhance the cytotoxic CD8 + T cell response and are associated with better clinical outcomes.
PJA1-mediated suppression of pyroptosis as a driver of docetaxel resistance in nasopharyngeal carcinoma
Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system. While chemotherapy may initially be effective in patient with nasopharyngeal carcinoma (NPC), resistance often develops. Here, the authors identify PJA1 as a driver of resistance to docetaxel via inhibition of GSDME-mediated proptosis and target this using a PJA1 inhibitor to restore sensitivity in preclinical models of NPC.
The E3 ligase NEURL3 suppresses epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma by promoting vimentin degradation
Background Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. Methods Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. Results The promoter region of NEURL3 , encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. Conclusions Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.
LINC00173 facilitates tumor progression by stimulating RAB1B‐mediated PA2G4 and SDF4 secretion in nasopharyngeal carcinoma
An increasing number of studies have found that long non‐coding RNA (lncRNA) play important roles in driving the progression of nasopharyngeal carcinoma (NPC). Our microarray screening revealed that expression of the lncRNA long intergenic non‐protein coding RNA 173 (LINC00173) was upregulated in NPC. However, its role and mechanism in NPC have not yet been elucidated. In this study, we demonstrate that high LINC00173 expression indicated a poor prognosis in NPC patients. Knockdown of LINC00173 significantly inhibited NPC cell proliferation, migration and invasion in vitro. Mechanistically, LINC00173 interacted and colocalized with Ras‐related protein Rab‐1B (RAB1B) in the cytoplasm, but the modulation of LINC00173 expression did not affect the expression of RAB1B at either the mRNA or protein levels. Instead, relying on the stimulation of RAB1B, LINC00173 could facilitate the extracellular secretion of proliferation‐associated 2G4 (PA2G4) and stromal cell‐derived factor 4 (SDF4; also known as 45‐kDa calcium‐binding protein) proteins, and knockdown of these proteins could reverse the NPC aggressive phenotype induced by LINC00173 overexpression. Moreover, in vivo LINC00173‐knockdown models exhibited a marked slowdown in tumor growth and a significant reduction in lymph node and lung metastases. In summary, LINC00173 serves as a crucial driver for NPC progression, and the LINC00173–RAB1B–PA2G4/SDF4 axis might provide a potential therapeutic target for NPC patients. Our study shows that LINC00173 is upregulated in nasopharyngeal carcinoma (NPC) and is associated with poor prognosis of patients. LINC00173 directly binds and interacts with RAB1B, subsequently facilitates PA2G4 and SDF4 secretion through exocytosis pathway, finally, promotes NPC cell proliferation, migration, invasion and metastasis. The LINC00173–RAB1B–PA2G4/SDF4 axis might provide a potential therapeutic target for NPC patients.
DNAJA4 suppresses epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma via PSMD2-mediated MYH9 degradation
Emerging evidence indicates that DNA methylation plays an important role in the initiation and progression of nasopharyngeal carcinoma (NPC). DNAJA4 is hypermethylated in NPC, while its role in regulating NPC progression remains unclear. Here, we revealed that the promoter of DNAJA4 was hypermethylated and its expression was downregulated in NPC tissues and cells. Overexpression of DNAJA4 significantly suppressed NPC cell migration, invasion, and EMT in vitro, and markedly inhibited the inguinal lymph node metastasis and lung metastatic colonization in vivo, while it did not affect NPC cell viability and proliferation capability. Mechanistically, DNAJA4 facilitated MYH9 protein degradation via the ubiquitin-proteasome pathway by recruiting PSMD2. Furthermore, the suppressive effects of DNAJA4 on NPC cell migration, invasion, and EMT were reversed by overexpression of MYH9 in NPC cells. Clinically, a low level of DNAJA4 indicated poor prognosis and an increased probability of distant metastasis in NPC patients. Collectively, DNAJA4 serves as a crucial driver for NPC invasion and metastasis, and the DNAJA4-PSMD2-MYH9 axis might contain potential targets for NPC treatments.
DCAF7 Acts as A Scaffold to Recruit USP10 for G3BP1 Deubiquitylation and Facilitates Chemoresistance and Metastasis in Nasopharyngeal Carcinoma
Despite docetaxel combined with cisplatin and 5‐fluorouracil (TPF) being the established treatment for advanced nasopharyngeal carcinoma (NPC), there are patients who do not respond positively to this form of therapy. However, the mechanisms underlying this lack of benefit remain unclear. DCAF7 is identified as a chemoresistance gene attenuating the response to TPF therapy in NPC patients. DCAF7 promotes the cisplatin resistance and metastasis of NPC cells in vitro and in vivo. Mechanistically, DCAF7 serves as a scaffold protein that facilitates the interaction between USP10 and G3BP1, leading to the elimination of K48‐linked ubiquitin moieties from Lys76 of G3BP1. This process helps prevent the degradation of G3BP1 via the ubiquitin‒proteasome pathway and promotes the formation of stress granule (SG)‐like structures. Moreover, knockdown of G3BP1 successfully reversed the formation of SG‐like structures and the oncogenic effects of DCAF7. Significantly, NPC patients with increased levels of DCAF7 showed a high risk of metastasis, and elevated DCAF7 levels are linked to an unfavorable prognosis. The study reveals DCAF7 as a crucial gene for cisplatin resistance and offers further understanding of how chemoresistance develops in NPC. The DCAF7‐USP10‐G3BP1 axis contains potential targets and biomarkers for NPC treatment. DCAF7 is identified as a key chemoresistance gene enhancing cisplatin resistance and metastasis in NPC, serving as a scaffold that recruits USP10 to eliminate K48‐linked ubiquitin moieties from Lys76 of G3BP1, thus promoting the formation of stress granule‐like structures. High levels of DCAF7 correlate with metastasis risk and poor prognosis, providing potential targets for overcoming NPC chemoresistance.
Prognostic value of immune score in nasopharyngeal carcinoma using digital pathology
BackgroundTumor-infiltrating lymphocytes have been reported as prognostic markers in tumors. We aimed to assess the prognostic value of total T cell (CD3+) density, cytotoxic T cell (CD8+) density and memory T cell (CD45RO+) density in patients with nasopharyngeal carcinoma (NPC).MethodsThe expression of CD3, CD8 and CD45RO was detected by immunohistochemistry in the training (n=221) and validation cohorts (n=115). The densities of these three markers were quantified by digital pathology both in the tumor and stroma. Then, we developed the immune score based on the density of these three markers and further analyzed its prognostic value.ResultsThe high density of CD3+, CD8+ and CD45RO+ T cells both in the tumor and/or stroma were significantly associated with the decrease in mortality in the training cohort, respectively. High immune score predicted a prolonged overall survival (OS) (HR 0.34, 95% CI 0.18 to 0.64, p=0.001, disease-free survival (DFS) (HR 0.44, 95% CI 0.25 to 0.78, p=0.005) and distant metastasis-free survival (DMFS) (HR 0.43, 95% CI 0.21 to 0.87, p=0.018) in NPC patients. The findings were confirmed in the validation cohort. Multivariate analysis revealed that immune score remained an independent prognostic indicator for OS, DFS and DMFS. In addition, we established a nomogram with the integration of all independent variables to predict individual risk of death.ConclusionsWe established an immune score model, which provides a reliable estimate of the risk of death, disease progress and distant metastasis in NPC patients.
Transcription factor ATMIN facilitates chemoresistance in nasopharyngeal carcinoma
Despite that the docectaxel-cisplatin-5-fluorouracil (TPF) induction chemotherapy has greatly improved patients’ survival and became the first-line treatment for advanced nasopharyngeal carcinoma (NPC), not all patients could benefit from this therapy. The mechanism underlying the TPF chemoresistance remains unclear. Here, by analyzing gene-expression microarray data and survival of patients who received TPF chemotherapy, we identify transcription factor ATMIN as a chemoresistance gene in response to TPF chemotherapy in NPC. Mass spectrometry and Co-IP assays reveal that USP10 deubiquitinates and stabilizes ATMIN protein, resulting the high-ATMIN expression in NPC. Knockdown of ATMIN suppresses the cell proliferation and facilitates the docetaxel-sensitivity of NPC cells both in vitro and in vivo, while overexpression of ATMIN exerts the opposite effect. Mechanistically, ChIP-seq combined with RNA-seq analysis suggests that ATMIN is associated with the cell death signaling and identifies ten candidate target genes of ATMIN. We further confirm that ATMIN transcriptionally activates the downstream target gene LCK and stabilizes it to facilitate cell proliferation and docetaxel resistance. Taken together, our findings broaden the insight into the molecular mechanism of chemoresistance in NPC, and the USP10-ATMIN-LCK axis provides potential therapeutic targets for the management of NPC.