Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,227
result(s) for
"He, Wenqian"
Sort by:
Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres
2019
Spider silks show unique combinations of strength, toughness, extensibility, and energy absorption. To date, it has been difficult to obtain spider silk-like mechanical properties using non-protein approaches. Here, we report on an artificial spider silk produced by the water-evaporation-induced self-assembly of hydrogel fibre made from polyacrylic acid and silica nanoparticles. The artificial spider silk consists of hierarchical core-sheath structured hydrogel fibres, which are reinforced by ion doping and twist insertion. The fibre exhibits a tensile strength of 895 MPa and a stretchability of 44.3%, achieving mechanical properties comparable to spider silk. The material also presents a high toughness of 370 MJ m
−3
and a damping capacity of 95%. The hydrogel fibre shows only ~1/9 of the impact force of cotton yarn with negligible rebound when used for impact reduction applications. This work opens an avenue towards the fabrication of artificial spider silk with applications in kinetic energy buffering and shock-absorbing.
Different models are believed to be the reason for the superior mechanical properties of spider silk. Here, the authors prepare artificial spider silk by water-evaporation-induced self-assembly of a hydrogel fibre made from polyacrylic acid and silica nanoparticles.
Journal Article
Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles
2024
Spider silk exhibits an excellent combination of high strength and toughness, which originates from the hierarchical self-assembled structure of spidroin during fiber spinning. In this work, superfine nanofibrils are established in polyelectrolyte artificial spider silk by optimizing the flexibility of polymer chains, which exhibits combination of breaking strength and toughness ranging from 1.83 GPa and 238 MJ m
−3
to 0.53 GPa and 700 MJ m
−3
, respectively. This is achieved by introducing ions to control the dissociation of polymer chains and evaporation-induced self-assembly under external stress. In addition, the artificial spider silk possesses thermally-driven supercontraction ability. This work provides inspiration for the design of high-performance fiber materials.
Spider silk has desirable properties, but these are hard to replicate with artificial materials. Here, the authors report a polyelectrolyte artificial spider silk, with control over dissociation of the polymer chains by introduction of ions, and thermally driven supercontraction.
Journal Article
Torsional refrigeration by twisted, coiled, and supercoiled fibers
2019
Higher-efficiency, lower-cost refrigeration is needed for both large- and small-scale cooling. Refrigerators using entropy changes during cycles of stretching or hydrostatic compression of a solid are possible alternatives to the vapor-compression fridges found in homes. We show that high cooling results from twist changes for twisted, coiled, or supercoiled fibers, including those of natural rubber, nickel titanium, and polyethylene fishing line. Using opposite chiralities of twist and coiling produces supercoiled natural rubber fibers and coiled fishing line fibers that cool when stretched. A demonstrated twist-based device for cooling flowing water provides high cooling energy and device efficiency. Mechanical calculations describe the axial and spring-index dependencies of twist-enhanced cooling and its origin in a phase transformation for polyethylene fibers.
Journal Article
Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus
by
Lee, Amanda J.
,
Krammer, Florian
,
Palese, Peter
in
Antigens
,
Binding sites
,
Biological Sciences
2016
The generation of strain-specific neutralizing antibodies against influenza A virus is known to confer potent protection against homologous infections. The majority of these antibodies bind to the hemagglutinin (HA) head domain and function by blocking the receptor binding site, preventing infection of host cells. Recently, elicitation of broadly neutralizing antibodies which target the conserved HA stalk domain has become a promising “universal” influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined. Here, we demonstrate that interactions among viral glycoprotein-binding antibodies of varying specificities regulate the magnitude of antibody-dependent cell-mediated cytotoxicity induction. We show that the mechanism responsible for this phenotype relies upon competition for binding to HA on the surface of infected cells and virus particles. Nonneutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity. Interestingly, anti-neuraminidase antibodies weakly induced antibody-dependent cell-mediated cytotoxicity and enhanced induction in the presence of HA stalk-binding antibodies in an additive manner. Our data demonstrate that antibody specificity plays an important role in the regulation of ADCC, and that cross-talk among antibodies of varying specificities determines the magnitude of Fc receptor-mediated effector functions.
Journal Article
Optimal activation of Fc-mediated effector functions by influenza virus hemagglutinin antibodies requires two points of contact
by
Leon, Paul E.
,
Krammer, Florian
,
Palese, Peter
in
Amino Acid Sequence
,
Antibodies, Monoclonal - metabolism
,
Antibodies, Viral - chemistry
2016
Influenza virus strain-specific monoclonal antibodies (mAbs) provide protection independent of Fc gamma receptor (FcγR) engagement. In contrast, optimal in vivo protection achieved by broadly reactive mAbs requires Fc–FcγR engagement. Most strain-specific mAbs target the head domain of the viral hemagglutinin (HA), whereas broadly reactive mAbs typically recognize epitopes within the HA stalk. This observation has led to questions regarding the mechanism regulating the activation of Fc-dependent effector functions by broadly reactive antibodies. To dissect the molecular mechanism responsible for this dichotomy, we inserted the FLAG epitope into discrete locations on HAs. By characterizing the interactions of several FLAG-tagged HAs with a FLAG-specific antibody, we show that in addition to Fc–FcγR engagement mediated by the FLAG-specific antibody, a second intermolecular bridge between the receptor-binding region of the HA and sialic acid on effector cells is required for optimal activation. Inhibition of this second molecular bridge, through the use of an F(ab′)₂ or the mutation of the sialic acid-binding site, renders the Fc–FcγR interaction unable to optimally activate effector cells. Our findings indicate that broadly reactive mAbs require two molecular contacts to possibly stabilize the immunologic synapse and potently induce antibody-dependent cell-mediated antiviral responses: (i) the interaction between the Fc of a mAb bound to HA with the FcγR of the effector cell and (ii) the interaction between the HA and its sialic acid receptor on the effector cell. This concept might be broadly applicable for protective antibody responses to viral pathogens that have suitable receptors on effector cells.
Journal Article
Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice
by
Leon, Paul E.
,
Hoffman, Kevin W.
,
Krammer, Florian
in
631/250/2504/342/1927
,
631/326/596/1578
,
631/61/51/1568
2017
The aim of candidate universal influenza vaccines is to provide broad protection against influenza A and B viruses. Studies have demonstrated that broadly reactive antibodies require Fc–Fc gamma receptor interactions for optimal protection; however, the innate effector cells responsible for mediating this protection remain largely unknown. Here, we examine the roles of alveolar macrophages, natural killer cells, and neutrophils in antibody-mediated protection. We demonstrate that alveolar macrophages play a dominant role in conferring protection provided by both broadly neutralizing and non-neutralizing antibodies in mice. Our data also reveal the potential mechanisms by which alveolar macrophages mediate protection in vivo, namely antibody-induced inflammation and antibody-dependent cellular phagocytosis. This study highlights the importance of innate effector cells in establishing a broad-spectrum antiviral state, as well as providing a better understanding of how multiple arms of the immune system cooperate to achieve an optimal antiviral response following influenza virus infection or immunization.
Broadly reactive antibodies that recognize influenza A virus HA can be protective, but the mechanism is not completely understood. Here, He et al. show that the inflammatory response and phagocytosis mediated by the interaction between protective antibodies and macrophages are essential for protection.
Journal Article
Mining functional gene modules by multi-view NMF of phenome-genome association
by
Xu, YingJie
,
He, WenQian
,
Zhang, YaoGong
in
Algorithms
,
Animal Genetics and Genomics
,
Animals
2025
Background
Mining functional gene modules from genomic data is an important step to detect gene members of pathways or other relations such as protein-protein interactions. This work explores the plausibility of detecting functional gene modules by factorizing gene-phenotype association matrix from the phenotype ontology data rather than the conventionally used gene expression data. Recently, the hierarchical structure of phenotype ontologies has not been sufficiently utilized in gene clustering while functionally related genes are consistently associated with phenotypes on the same path in phenotype ontologies.
Results
This work demonstrates a hierarchical Nonnegative Matrix Factorization (NMF) framework, called Consistent Multi-view Nonnegative Matrix Factorization (CMNMF), which factorizes genome-phenome association matrix at consecutive levels of the hierarchical structure in phenotype ontology to mine functional gene modules. CMNMF constrains the gene clusters from the association matrices at two consecutive levels to be consistent since the genes are annotated with both the child-level phenotypes and the parent-level phenotypes in two levels. CMNMF also restricts the identified gene clusters to be densely connected in the phenotype ontology hierarchy. In the experiments on mining functionally related genes from mouse phenotype ontology and human phenotype ontology, CMNMF effectively improves clustering performance over the baseline methods. Gene ontology enrichment analysis is also conducted to verify its practical effectiveness to reveal meaningful gene modules.
Conclusions
Utilizing the information in the hierarchical structure of phenotype ontology, CMNMF can identify functional gene modules with more biological significance than conventional methods. CMNMF can also be a better tool for predicting members of gene pathways and protein-protein interactions.
Journal Article
Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Induce Potent Phagocytosis of Immune Complexes by Neutrophils in an Fc-Dependent Manner
by
Palese, Peter
,
Nachbagauer, Raffael
,
Tan, Gene S.
in
Animals
,
Antibodies
,
Antibodies, Monoclonal - immunology
2016
Broadly neutralizing antibodies that recognize the conserved hemagglutinin (HA) stalk have emerged as exciting new biotherapeutic tools to combat seasonal and pandemic influenza viruses. Our general understanding of the mechanisms by which stalk-specific antibodies achieve protection is rapidly evolving. It has recently been demonstrated that broadly neutralizing HA stalk-specific IgG antibodies require Fc-Fcγ receptor (FcγR) interactions for optimal protection
in vivo
. Here we examine the neutrophil effector functions induced by stalk-specific antibodies. As the most abundant subset of blood leukocytes, neutrophils represent a critical innate effector cell population and serve an instrumental role in orchestrating downstream adaptive responses to influenza virus infection. Yet, the interplay of HA stalk-specific IgG, Fc-FcγR engagement, and neutrophils has remained largely uncharacterized. Using an
in vitro
assay to detect the production of reactive oxygen species (ROS), we show that human and mouse monoclonal HA stalk-specific IgG antibodies are able to induce the production of ROS by neutrophils, while HA head-specific antibodies do not. Furthermore, our results indicate that the production of ROS is dependent on Fc receptor (FcR) engagement and phagocytosis. We went on to assess the ability of monoclonal HA stalk-specific IgA antibodies to induce ROS. Consistent with our findings for monoclonal IgGs, only HA stalk-specific IgA antibodies elicited ROS production by neutrophils. This induction is dependent on the engagement of FcαR1. Taken together, our findings describe a novel FcR-dependent effector function induced by HA stalk-specific IgG and IgA antibodies, and importantly, our studies shed light on the mechanisms by which HA stalk-specific antibodies achieve protection.
IMPORTANCE
The present study provides evidence that broadly neutralizing HA stalk-specific antibodies induce downstream Fc-mediated neutrophil effector functions. In addition to their ability to neutralize, this class of antibodies has been shown to rely on Fc-Fc receptor interactions for optimal protection
in vivo
. Curiously, neutralizing antibodies that bind the HA head domain do not require such interactions. Our findings build on these previous observations and provide a more complete picture of the relationship between stalk-specific antibodies and cells of the innate immune compartment. Furthermore, our data suggest that the ability of HA stalk-specific antibodies to mediate Fc-Fc receptor engagement is epitope dependent. Overall, this work will inform the rational design of improved influenza virus vaccines and therapeutics.
The present study provides evidence that broadly neutralizing HA stalk-specific antibodies induce downstream Fc-mediated neutrophil effector functions. In addition to their ability to neutralize, this class of antibodies has been shown to rely on Fc-Fc receptor interactions for optimal protection
in vivo
. Curiously, neutralizing antibodies that bind the HA head domain do not require such interactions. Our findings build on these previous observations and provide a more complete picture of the relationship between stalk-specific antibodies and cells of the innate immune compartment. Furthermore, our data suggest that the ability of HA stalk-specific antibodies to mediate Fc-Fc receptor engagement is epitope dependent. Overall, this work will inform the rational design of improved influenza virus vaccines and therapeutics.
Journal Article
Ube2L6 Promotes M1 Macrophage Polarization in High-Fat Diet-Fed Obese Mice via ISGylation of STAT1 to Trigger STAT1 Activation
2024
Introduction: In obesity-related type 2 diabetes mellitus (T2DM), M1 macrophages aggravate chronic inflammation and insulin resistance. ISG15-conjugation enzyme E2L6 (Ube2L6) has been demonstrated as a promoter of obesity and insulin resistance. This study investigated the function and mechanism of Ube2L6 in M1 macrophage polarization in obesity. Methods: Obesity was induced in Ube2L6 AKO mice and age-matched Ube2L6 flox/flox control mice by high-fat diet (HFD). Stromal vascular cells were isolated from the epididymal white adipose tissue of mice. Polarization induction was performed in mouse bone marrow-derived macrophages (BMDMs) by exposure to IFN-γ, lipopolysaccharide, or IL-4. F4/80 expression was assessed by immunohistochemistry staining. Expressions of M1/M2 macrophage markers and target molecules were determined by flow cytometry, RT-qPCR, and Western blotting, respectively. Protein interaction was validated by co-immunoprecipitation (Co-IP) assay. The release of TNF-α and IL-10 was detected by ELISA. Results: The polarization of pro-inflammatory M1 macrophages together with an increase in macrophage infiltration was observed in HFD-fed mice, which could be restrained by Ube2L6 knockdown. Additionally, Ube2L6 deficiency triggered the repolarization of BMDMs from M1 to M2 phenotypes. Mechanistically, Ube2L6 promoted the expression and activation of signal transducer and activator of transcription 1 (STAT1) through interferon-stimulated gene 15 (ISG15)-mediated ISGlylation, resulting in M1 macrophage polarization. Conclusion: Ube2L6 exerts as an activator of STAT1 via post-translational modification of STAT1 by ISG15, thereby triggering M1 macrophage polarization in HFD-fed obese mice. Overall, targeting Ube2L6 may represent an effective therapeutic strategy for ameliorating obesity-related T2DM.
Journal Article
The interaction effect of transfusion history and previous stroke history on the risk of venous thromboembolism in stroke patients: a prospective cohort study
2023
Background
Blood transfusion and previous stroke history are two independent risk factors of venous thromboembolism (VTE) in stroke patients. Whether the potential interaction of transfusion history and previous stroke history is associated with a greater risk of VTE remains unclear. This study aims to explore whether the combination of transfusion history and previous stroke history increases the risk of VTE among Chinese stroke patients.
Methods
A total of 1525 participants from the prospective Stroke Cohort of Henan Province were enrolled in our study. Multivariate logistic regression models were used to explore the associations among transfusion history, previous stroke history and VTE. The interaction was evaluated on both multiplicative and additive scales. The odds ratio (95% CI), relative excess risk of interaction (RERI), attributable proportion (AP), and synergy index (S) of interaction terms were used to examine multiplicative and additive interactions. Finally, we divided our population into two subgroups by National Institutes of Health Stroke Scale (NIHSS) score and re-evaluated the interaction effect in both scales.
Results
A total of 281 (18.4%) participants of 1525 complicated with VTE. Transfusion and previous stroke history were associated with an increased risk of VTE in our cohort. In the multiplicative scale, the combination of transfusion and previous stroke history was statistically significant on VTE in both unadjusted and adjusted models (
P
<0.05). For the additive scale, the RERI shrank to 7.016 (95% CI: 1.489 ~ 18.165), with the AP of 0.650 (95% CI: 0.204 ~ 0.797) and the S of 3.529 (95% CI: 1.415 ~ 8.579) after adjusting for covariates, indicating a supra-additive effect. In subgroups, the interaction effect between transfusion history and previous stroke history was pronouncedly associated with the increased risk of VTE in patients with NIHSS score > 5 points (
P
<0.05).
Conclusions
Our results suggest that there may be a potential synergistic interaction between transfusion history and previous stroke history on the risk of VTE. Besides, the percentage of VTE incidence explained by interaction increased with the severity of stroke. Our findings will provide valuable evidence for thromboprophylaxis in Chinese stroke patients.
Journal Article