Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
166 result(s) for "Hector, Andy"
Sort by:
Competition for Light Causes Plant Biodiversity Loss After Eutrophication
Human activities have increased the availability of nutrients in terrestrial and aquatic ecosystems. In grasslands, this eutrophication causes loss of plant species diversity, but the mechanism of this loss has been difficult to determine. Using experimental grassland plant communities, we found that addition of light to the grassland understory prevented the loss of biodiversity caused by eutrophication. There was no detectable role for competition for soil resources in diversity loss. Thus, competition for light is a major mechanism of plant diversity loss after eutrophication and explains the particular threat of eutrophication to plant diversity. Our conclusions have implications for grassland management and conservation policy and underscore the need to control nutrient enrichment if plant diversity is to be preserved.
Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels
Widespread forest die-back due to the increasing frequency and intensity of drought in many parts of the planet is focusing attention on the mechanisms of tree drought resistance. This study provides direct experimental evidence that greater non-structural carbohydrate concentrations before drought help maintain hydraulic function and thereby prolong drought tolerance in seedlings of ten tropical tree species. Plants in most biomes are thought to be living at their hydraulic limits, and alterations to precipitation patterns consistent with climate change trends are causing die-back in forests across the globe 1 , 2 , 3 , 4 . However, within- and among-species variation in plant traits that promote persistence and adaptation under these new rainfall regimes may reduce mortality in these changing climates 5 , 6 . Storage of non-structural carbohydrates (NSCs) is posited as an important trait for resistance and resilience of forests to climate-change-induced drought, but the underlying mechanisms remain unclear 7 , 8 , 9 , 10 . Here we demonstrate a positive relationship between NSCs and drought survival by manipulating NSC concentrations within seedlings of ten tropical tree species. Seedlings experimentally enriched in NSCs showed higher stem water potentials and sustained NSCs during drought. NSC use for maintenance of osmoregulation and hydraulic function therefore seems to underlie improved drought resistance. That drought mortality is delayed by higher NSC concentrations has implications for predicting the impacts of climate change on forest die-back 2 , 4 and may help focus restoration efforts on species that increase the resistance and resilience of forests to climate change.
Linking the influence and dependence of people on biodiversity across scales
Biodiversity enhances many of nature's benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth's history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation.
Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats
The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity’s effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity’s effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. The influence of biodiversity on multiple ecosystem processes is not well understood. Analysing 94 biodiversity-ecosystem functioning experiments, Lefcheck et al . find that increased species richness maintains more ecological functions, across multiple taxa, trophic levels and habitats.
Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony
Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity–stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services.
Partitioning selection and complementarity in biodiversity experiments
The impact of biodiversity loss on the functioning of ecosystems and their ability to provide ecological services has become a central issue in ecology. Several experiments have provided evidence that reduced species diversity may impair ecosystem processes such as plant biomass production 1 , 2 , 3 , 4 , 5 . The interpretation of these experiments, however, has been controversial 6 , 7 , 8 , 9 , 10 , 11 , 12 because two types of mechanism may operate in combination 6 , 13 , 14 , 15 . In the ‘selection effect’, dominance by species with particular traits affects ecosystem processes. In the ‘complementarity effect’, resource partitioning or positive interactions lead to increased total resource use. Here we present a new approach to separate the two effects on the basis of an additive partitioning analogous to the Price equation in evolutionary genetics 16 , 17 , 18 , 19 . Applying this method to data from the pan-European BIODEPTH experiment 4 reveals that the selection effect is zero on average and varies from negative to positive in different localities, depending on whether species with lower- or higher-than-average biomass dominate communities. In contrast, the complementarity effect is positive overall, supporting the hypothesis that plant diversity influences primary production in European grasslands through niche differentiation or facilitation.
Eutrophication weakens stabilizing effects of diversity in natural grasslands
Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity–stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.
Impacts of plant diversity on biomass production increase through time because of species complementarity
Accelerating rates of species extinction have prompted a growing number of researchers to manipulate the richness of various groups of organisms and examine how this aspect of diversity impacts ecological processes that control the functioning of ecosystems. We summarize the results of 44 experiments that have manipulated the richness of plants to examine how plant diversity affects the production of biomass. We show that mixtures of species produce an average of 1.7 times more biomass than species monocultures and are more productive than the average monoculture in 79% of all experiments. However, in only 12% of all experiments do diverse polycultures achieve greater biomass than their single most productive species. Previously, a positive net effect of diversity that is no greater than the most productive species has been interpreted as evidence for selection effects, which occur when diversity maximizes the chance that highly productive species will be included in and ultimately dominate the biomass of polycultures. Contrary to this, we show that although productive species do indeed contribute to diversity effects, these contributions are equaled or exceeded by species complementarity, where biomass is augmented by biological processes that involve multiple species. Importantly, both the net effect of diversity and the probability of polycultures being more productive than their most productive species increases through time, because the magnitude of complementarity increases as experiments are run longer. Our results suggest that experiments to date have, if anything, underestimated the impacts of species extinction on the productivity of ecosystems.