Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11
result(s) for
"Heege, Thomas"
Sort by:
Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor
2013
Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km(2) of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km(2)). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas.
Journal Article
Monitoring Water Diversity and Water Quality with Remote Sensing and Traits
by
Bumberger, Jan
,
Pause, Marion
,
von Trentini, Fabian
in
Aquatic ecosystems
,
Climate change
,
Condition monitoring
2024
Changes and disturbances to water diversity and quality are complex and multi-scale in space and time. Although in situ methods provide detailed point information on the condition of water bodies, they are of limited use for making area-based monitoring over time, as aquatic ecosystems are extremely dynamic. Remote sensing (RS) provides methods and data for the cost-effective, comprehensive, continuous and standardised monitoring of characteristics and changes in characteristics of water diversity and water quality from local and regional scales to the scale of entire continents. In order to apply and better understand RS techniques and their derived spectral indicators in monitoring water diversity and quality, this study defines five characteristics of water diversity and quality that can be monitored using RS. These are the diversity of water traits, the diversity of water genesis, the structural diversity of water, the taxonomic diversity of water and the functional diversity of water. It is essential to record the diversity of water traits to derive the other four characteristics of water diversity from RS. Furthermore, traits are the only and most important interface between in situ and RS monitoring approaches. The monitoring of these five characteristics of water diversity and water quality using RS technologies is presented in detail and discussed using numerous examples. Finally, current and future developments are presented to advance monitoring using RS and the trait approach in modelling, prediction and assessment as a basis for successful monitoring and management strategies.
Journal Article
Monitoring water quality in two dammed reservoirs from multispectral satellite data
by
Bresciani, Mariano
,
Giardino, Claudia
,
Schenk, Karin
in
Chlorophyll
,
chlorophyll-a
,
Drinking water
2019
Providing relatively fine spatial resolution multispectral data, Landsat-8, Landsat-7 (L8 and L7, respectively) and Sentinel-2 (S2) from 2013 to 2018 have been used in this study for enabling high-frequency monitoring of water quality of two small (the smaller with an area of 1.6 km
2
) freshwater dammed reservoirs. Located in Sardinia (Italy) and Crete (Greek), respectively, Mulargia and Aposelemis represent vital resources to supply drinking water in downstream valleys. A total of 400 cloud-free satellite images were turned into information on water quality by using an image processing chain implementing physically based methods for retrieving chlorophyll-a concentration (Chl-a), turbidity, Secchi disk depth (SDD) and surface water temperature. These estimates have been successfully validated (the lower Pearson correlation r was 0.88 for Chl-a) with 23 match-ups of in situ and satellite data. Results of the multi-temporal analyses showed a decrease of SDD due to the increase of Chl-a in Aposelemis or an increase of turbidity in Mulargia. For both freshwater reservoirs, the satellite-derived trophic state index assigned both lakes to mesotrophic conditions. The results finally suggested the effectiveness of S2 and Landsat in increasing, for the latest investigated years, the frequency of observations.
Journal Article
Synergy and fusion of optical and synthetic aperture radar satellite data for underwater topography estimation in coastal areas
by
Heege, Thomas
,
Lehner, Susanne
,
Pleskachevsky, Andrey
in
Atmospheric Sciences
,
Bathymetry
,
Coastal zone
2011
A method to obtain underwater topography for coastal areas using state-of-the-art remote sensing data and techniques worldwide is presented. The data from the new Synthetic Aperture Radar (SAR) satellite TerraSAR-X with high resolution up to 1 m are used to render the ocean waves. As bathymetry is reflected by long swell wave refraction governed by underwater structures in shallow areas, it can be derived using the dispersion relation from observed swell properties. To complete the bathymetric maps, optical satellite data of the QuickBird satellite are fused to map extreme shallow waters, e.g., in near-coast areas. The algorithms for bathymetry estimation from optical and SAR data are combined and integrated in order to cover different depth domains. Both techniques make use of different physical phenomena and mathematical treatment. The optical methods based on sunlight reflection analysis provide depths in shallow water up to 20 m in preferably calm weather conditions. The depth estimation from SAR is based on the observation of long waves and covers the areas between about 70- and 10-m water depths depending on sea state and acquisition quality. The depths in the range of 20 m up to 10 m represent the domain where the synergy of data from both sources arises. Thus, the results derived from SAR and optical sensors complement each other. In this study, a bathymetry map near Rottnest Island, Australia, is derived. QuickBird satellite optical data and radar data from TerraSAR-X have been used. The depths estimated are aligned on two different grids. The first one is a uniform rectangular mesh with a horizontal resolution of 150 m, which corresponds to an average swell wavelength observed in the 10 × 10-km SAR image acquired. The second mesh has a resolution of 150 m for depths up to 20 m (deeper domain covered by SAR-based technique) and 2.4 m resolution for the shallow domain imaged by an optical sensor. This new technique provides a platform for mapping of coastal bathymetry over a broad area on a scale that is relevant to marine planners, managers, and offshore industry.
Journal Article
Water Quality Monitoring for Lake Constance with a Physically Based Algorithm for MERIS Data
2008
A physically based algorithm is used for automatic processing of MERIS level 1B full resolution data. The algorithm is originally used with input variables for optimization with different sensors (i.e. channel recalibration and weighting), aquatic regions (i.e. specific inherent optical properties) or atmospheric conditions (i.e. aerosol models). For operational use, however, a lake-specific parameterization is required, representing an approximation of the spatio-temporal variation in atmospheric and hydrooptic conditions, and accounting for sensor properties. The algorithm performs atmospheric correction with a LUT for at-sensor radiance, and a downhill simplex inversion of chl-a, sm and y from subsurface irradiance reflectance. These outputs are enhanced by a selective filter, which makes use of the retrieval residuals. Regular chl-a sampling measurements by the Lake’s protection authority coinciding with MERIS acquisitions were used for parameterization, training and validation.
Journal Article
High-resolution satellite remote sensing of littoral vegetation of Lake Sevan (Armenia) as a basis for monitoring and assessment
by
Heege, Thomas
,
Agyemang, Thomas Kwaku
,
Sayadyan, Hovik
in
Algorithms
,
Annual variations
,
Aquatic ecosystems
2011
Physics-based remote sensing in littoral environments for ecological monitoring and assessment is a challenging task that depends on adequate atmospheric conditions during data acquisition, sensor capabilities and correction of signal disturbances associated with water surface and water column. Airborne hyper-spectral scanners offer higher potential than satellite sensors for wetland monitoring and assessment. However, application in remote areas is often limited by national restrictions, time and high costs compared to satellite data. In this study, we tested the potential of the commercial, high-resolution multi-spectral satellite QuickBird for monitoring littoral zones of Lake Sevan (Armenia). We present a classification procedure that uses a physics-based image processing system (MIP) and GIS tools for calculating spatial metrics. We focused on classification of littoral sediment coverage over three consecutive years (2006-2008) to document changes in vegetation structure associated with a rise in water levels. We describe a spectral unmixing algorithm for basic classification and a supervised algorithm for mapping vegetation types. Atmospheric aerosol retrieval, lake-specific parameterisation and validation of classifications were supported by underwater spectral measurements in the respective seasons. Results revealed accurate classification of submersed aquatic vegetation and sediment structures in the littoral zone, documenting spatial vegetation dynamics induced by water level fluctuations and inter-annual variations in phytoplankton blooms. The data prove the cost-effective applicability of satellite remote-sensing approaches for high-resolution mapping in space and time of lake littoral zones playing a major role in lake ecosystem functioning. Such approaches could be used for monitoring wetlands anywhere in the world.
Journal Article
High-resolution satellite remote sensing of littoral vegetation of Lake Sevan (Armenia) as a basis for monitoring and assessment : QuickBird satellite imagery as a tool for restoration and rehabilitation of Lake Sevan, Armenia
by
VARDANYAN, Lilit
,
HEEGE, Thomas
,
SAYADYAN, Hovik
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Biological and medical sciences
2011
Journal Article
Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor. e70105
2013
Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km2). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas.
Journal Article
Near-Real-Time Environmental Monitoring of all Australian Waters
2014
Importantly, physics-based methods-as opposed to empirical methods-require no known information of the study area. [...]they can be applied independent of a satellite sensor (i.e., MODIS, Landsat, RapidEye or Worldview-2) or study area. Throughout the past 20 years, EOMAP and German Aerospace Center (DLR) scientists have developed a unique physics-based modular inversion and processing system (MIP), which includes all the relevant processing steps to guarantee a robust, standardized and operational retrieval of water quality parameters from satellite data.
Magazine Article
Reliability and comparability of human brain structural covariance networks
by
Wang, Yujiang
,
Pipa, Gordon
,
Taylor, Peter N.
in
Adult
,
Analysis of covariance
,
Brain - diagnostic imaging
2020
Structural covariance analysis is a widely used structural MRI analysis method which characterises the co-relations of morphology between brain regions over a group of subjects. To our knowledge, little has been investigated in terms of the comparability of results between different data sets of healthy human subjects, as well as the reliability of results over the same subjects in different rescan sessions, image resolutions, or FreeSurfer versions.
In terms of comparability, our results show substantial differences in the structural covariance matrix between data sets of age- and sex-matched healthy human adults. These differences persist after univariate site correction, they are exacerbated by low sample sizes, and they are most pronounced when using average cortical thickness as a morphological measure. Down-stream graph theoretic analyses further show statistically significant differences.
In terms of reliability, substantial differences were also found when comparing repeated scan sessions of the same subjects, image resolutions, and even FreeSurfer versions of the same image. We could further estimate the relative measurement error and showed that it is largest when using cortical thickness as a morphological measure. Using simulated data, we argue that cortical thickness is least reliable because of larger relative measurement errors.
Practically, we make the following recommendations (1) combining subjects across sites into one group should be avoided, particularly if sites differ in image resolutions, subject demographics, or preprocessing steps; (2) surface area and volume should be preferred as morphological measures over cortical thickness; (3) a large number of subjects (n≫30 for the Desikan-Killiany parcellation) should be used to estimate structural covariance; (4) measurement error should be assessed where repeated measurements are available; (5) if combining sites is critical, univariate (per ROI) site-correction is insufficient, but error covariance (between ROIs) should be explicitly measured and modelled.
Journal Article