Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Heetderks, William"
Sort by:
Association of neighborhood-level sociodemographic factors with Direct-to-Consumer (DTC) distribution of COVID-19 rapid antigen tests in 5 US communities
Background Many interventions for widescale distribution of rapid antigen tests for COVID-19 have utilized online, direct-to-consumer (DTC) ordering systems; however, little is known about the sociodemographic characteristics of home-test users. We aimed to characterize the patterns of online orders for rapid antigen tests and determine geospatial and temporal associations with neighborhood characteristics and community incidence of COVID-19, respectively. Methods This observational study analyzed online, DTC orders for rapid antigen test kits from beneficiaries of the Say Yes! Covid Test program from March to November 2021 in five communities: Louisville, Kentucky; Indianapolis, Indiana; Fulton County, Georgia; O’ahu, Hawaii; and Ann Arbor/Ypsilanti, Michigan. Using spatial autoregressive models, we assessed the geospatial associations of test kit distribution with Census block-level education, income, age, population density, and racial distribution and Census tract-level Social Vulnerability Index. Lag association analyses were used to measure the association between online rapid antigen kit orders and community-level COVID-19 incidence. Results In total, 164,402 DTC test kits were ordered during the intervention. Distribution of tests at all sites were significantly geospatially clustered at the block-group level (Moran’s I: p  < 0.001); however, education, income, age, population density, race, and social vulnerability index were inconsistently associated with test orders across sites. In Michigan, Georgia, and Kentucky, there were strong associations between same-day COVID-19 incidence and test kit orders (Michigan: r  = 0.89, Georgia: r  = 0.85, Kentucky: r  = 0.75). The incidence of COVID-19 during the current day and the previous 6-days increased current DTC orders by 9.0 (95% CI = 1.7, 16.3), 3.0 (95% CI = 1.3, 4.6), and 6.8 (95% CI = 3.4, 10.2) in Michigan, Georgia, and Kentucky, respectively. There was no same-day or 6-day lagged correlation between test kit orders and COVID-19 incidence in Indiana. Conclusions Our findings suggest that online ordering is not associated with geospatial clustering based on sociodemographic characteristics. Observed temporal preferences for DTC ordering can guide public health messaging around DTC testing programs.
Design, creation, and use of the Test Us Bank (TUB) COVID-19 sample biorepository
Shortly after the first case of SARS-CoV-2 was diagnosed a public health emergency (PHE) was declared and a multi-agency response was initiated within the US federal government to create and propagate testing capacity. As part of this response, an unprecedented program designated Rapid Acceleration of Diagnostics (RADx) Tech was established by the National Institutes of Health (NIH) to facilitate the development of point-of-care tests for the COVID-19. The RADx Tech Clinical Studies Core (CSC), located at the University of Massachusetts Chan Medical School (UMass Chan), with partnering academic, private, and non-governmental organizations around the country, was tasked with developing clinical studies to support this work. This manuscript details development of a biorepository specifically focused on the collection and storage of samples designed for diagnostic platform development. It highlights the unified collection and annotation process that enabled gathering a diverse set of samples. This diversity encompasses the geography and backgrounds of the participants as well as sample characteristics such as variant type and RT-PCR cycle threshold (CT) value of the corresponding reference sample on a uniform clinical reference platform.
Daily longitudinal sampling of SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness
The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimated viral expansion and clearance rates and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to ‘superspreading’. Viral genome loads often peaked days earlier in saliva than in nasal swabs, indicating strong tissue compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of Alpha (B.1.1.7) and previously circulating non-variant-of-concern viruses were mostly indistinguishable, indicating that the enhanced transmissibility of this variant cannot be explained simply by higher viral loads or delayed clearance. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading. A longitudinal analysis of viral expansion and clearance rates in 60 individuals sampled daily during acute infection reveals high inter-individual variation in infectious virus shedding, which may contribute to superspreading.
Patient-Centered Identification of Meaningful Regulatory Endpoints for Medical Devices to Treat Parkinson’s Disease
Introduction. A growing literature has developed on identifying outcomes that matter to patients. This study demonstrates an approach involving patient and regulatory perspectives to identify outcomes that are meaningful in the context of medical devices for Parkinson’s disease (PD). Methods. A systematic process was used for specifying relevant regulatory endpoints by synthesizing inputs of various sources and stakeholders. First, a literature review was conducted to identify important benefits, risks, and other considerations for medical devices to treat PD; patient discussion groups (n = 6) were conducted to refine the list of considerations, followed by a survey (n = 29) to prioritize them; and patient and Food and Drug Administration (FDA) reviewers informed specification of the final endpoints. Two FDA clinicians gave clinical and regulatory perspectives at each step. Results. Movement symptoms were ranked as most important (ranked 1 or 2 by 72% of participants) and psychological and cognitive symptoms as the next most important (ranked 1 or 2 by 52% of participants). Within movement symptoms, falls, impaired movement, bradykinesia, resting tremor, stiffness, and rigidity were ranked highly. Overall, nine attributes were identified and prioritized as patient-centric for use in clinical trial design and quantitative patient preference studies. These attributes were benefits and risks related to therapeutics for PD as well as other considerations, including time until a medical device is available for patient use. Discussion. This prospective approach identified meaningful and relevant benefits, risks, and other considerations that may be used for clinical trial design and quantitative patient preference studies. Although PD was the focus of this study, the approach can be used to study patient perspectives about other disease or treatment areas.
Feasibility of At-Home Serial Testing Using Over-the-Counter SARS-CoV-2 Tests With a Digital Smartphone App for Assistance: Longitudinal Cohort Study
The ongoing SARS-CoV-2 pandemic necessitates the development of accurate, rapid, and affordable diagnostics to help curb disease transmission, morbidity, and mortality. Rapid antigen tests are important tools for scaling up testing for SARS-CoV-2; however, little is known about individuals' use of rapid antigen tests at home and how to facilitate the user experience. This study aimed to describe the feasibility and acceptability of serial self-testing with rapid antigen tests for SARS-CoV-2, including need for assistance and the reliability of self-interpretation. A total of 206 adults in the United States with smartphones were enrolled in this single-arm feasibility study in February and March 2021. All participants were asked to self-test for COVID-19 at home using rapid antigen tests daily for 14 days and use a smartphone app for testing assistance and to report their results. The main outcomes were adherence to the testing schedule, the acceptability of testing and smartphone app experiences, and the reliability of participants versus study team's interpretation of test results. Descriptive statistics were used to report the acceptability, adherence, overall rating, and experience of using the at-home test and MyDataHelps app. The usability, acceptability, adherence, and quality of at-home testing were analyzed across different sociodemographic, age, and educational attainment groups. Of the 206 enrolled participants, 189 (91.7%) and 159 (77.2%) completed testing and follow-up surveys, respectively. In total, 51.3% (97/189) of study participants were women, the average age was 40.7 years, 34.4% (65/189) were non-White, and 82% (155/189) had a bachelor's degree or higher. Most (n=133/206, 64.6%) participants showed high testing adherence, meaning they completed over 75% of the assigned tests. Participants' interpretations of test results demonstrated high agreement (2106/2130, 98.9%) with the study verified results, with a κ score of 0.29 (P<.001). Participants reported high satisfaction with self-testing and the smartphone app, with 98.7% (157/159) reporting that they would recommend the self-test and smartphone app to others. These results were consistent across age, race/ethnicity, and gender. Participants' high adherence to the recommended testing schedule, significant reliability between participants and study staff's test interpretation, and the acceptability of the smartphone app and self-test indicate that self-tests for SARS-CoV-2 with a smartphone app for assistance and reporting is a highly feasible testing modality among a diverse population of adults in the United States.
Design and implementation of a digital site-less clinical study of serial rapid antigen testing to identify asymptomatic SARS-CoV-2 infection
Rapid antigen detection tests (Ag-RDT) for SARS-CoV-2 with emergency use authorization generally include a condition of authorization to evaluate the test's performance in asymptomatic individuals when used serially. We aim to describe a novel study design that was used to generate regulatory-quality data to evaluate the serial use of Ag-RDT in detecting SARS-CoV-2 virus among asymptomatic individuals. This prospective cohort study used a siteless, digital approach to assess longitudinal performance of Ag-RDT. Individuals over 2 years old from across the USA with no reported COVID-19 symptoms in the 14 days prior to study enrollment were eligible to enroll in this study. Participants throughout the mainland USA were enrolled through a digital platform between October 18, 2021 and February 15, 2022. Participants were asked to test using Ag-RDT and molecular comparators every 48 hours for 15 days. Enrollment demographics, geographic distribution, and SARS-CoV-2 infection rates are reported. A total of 7361 participants enrolled in the study, and 492 participants tested positive for SARS-CoV-2, including 154 who were asymptomatic and tested negative to start the study. This exceeded the initial enrollment goals of 60 positive participants. We enrolled participants from 44 US states, and geographic distribution of participants shifted in accordance with the changing COVID-19 prevalence nationwide. The digital site-less approach employed in the \"Test Us At Home\" study enabled rapid, efficient, and rigorous evaluation of rapid diagnostics for COVID-19 and can be adapted across research disciplines to optimize study enrollment and accessibility.
Design and Preliminary Findings of Adherence to the Self-Testing for Our Protection From COVID-19 (STOP COVID-19) Risk-Based Testing Protocol: Prospective Digital Study
Background:Serial testing for SARS-CoV-2 is recommended to reduce spread of the virus; however, little is known about adherence to recommended testing schedules and reporting practices to health departments.Objective:The Self-Testing for Our Protection from COVID-19 (STOP COVID-19) study aims to examine adherence to a risk-based COVID-19 testing strategy using rapid antigen tests and reporting of test results to health departments.Methods:STOP COVID-19 is a 12-week digital study, facilitated using a smartphone app for testing assistance and reporting. We are recruiting 20,000 participants throughout the United States. Participants are stratified into high- and low-risk groups based on history of COVID-19 infection and vaccination status. High-risk participants are instructed to perform twice-weekly testing for COVID-19 using rapid antigen tests, while low-risk participants test only in the case of symptoms or exposure to COVID-19. All participants complete COVID-19 surveillance surveys, and rapid antigen results are recorded within the smartphone app. Primary outcomes include participant adherence to a risk-based serial testing protocol and percentage of rapid tests reported to health departments.Results:As of February 2022, 3496 participants have enrolled, including 1083 high-risk participants. Out of 13,730 tests completed, participants have reported 13,480 (98.18%, 95% CI 97.9%-98.4%) results to state public health departments with full personal identifying information or anonymously. Among 622 high-risk participants who finished the study period, 35.9% showed high adherence to the study testing protocol. Participants with high adherence reported a higher percentage of test results to the state health department with full identifying information than those in the moderate- or low-adherence groups (high: 71.7%, 95% CI 70.3%-73.1%; moderate: 68.3%, 95% CI 66.0%-70.5%; low: 63.1%, 59.5%-66.6%).Conclusions:Preliminary results from the STOP COVID-19 study provide important insights into rapid antigen test reporting and usage, and can thus inform the use of rapid testing interventions for COVID-19 surveillance.
Education and Training Activities at the NIBIB
In addition to graduate training, we also support summer programs for research experiences in bioengineering and bioinformatics at me intramural labs at NIH and in collaboration with the National Science Foundation at 10 universities. Medical imaging science, which may require expertise and collaboration in clinical medicine, physics, engineering, chemistry, biology, informatics, or other fields of research, is particularly well suited to an interdisciplinary approach.
Use of a Digital Assistant to Report COVID-19 Rapid Antigen Self-test Results to Health Departments in 6 US Communities
Widespread distribution of rapid antigen tests is integral to the US strategy to address COVID-19; however, it is estimated that few rapid antigen test results are reported to local departments of health. To characterize how often individuals in 6 communities throughout the United States used a digital assistant to log rapid antigen test results and report them to their local departments of health. This prospective cohort study is based on anonymously collected data from the beneficiaries of the Say Yes! Covid Test program, which distributed more than 3 000 000 rapid antigen tests at no cost to residents of 6 communities (Louisville, Kentucky; Indianapolis, Indiana; Fulton County, Georgia; O'ahu, Hawaii; Ann Arbor and Ypsilanti, Michigan; and Chattanooga, Tennessee) between April and October 2021. A descriptive evaluation of beneficiary use of a digital assistant for logging and reporting their rapid antigen test results was performed. Widespread community distribution of rapid antigen tests. Number and proportion of tests logged and reported to the local department of health through the digital assistant. A total of 313 000 test kits were distributed, including 178 785 test kits that were ordered using the digital assistant. Among all distributed kits, 14 398 households (4.6%) used the digital assistant, but beneficiaries reported three-quarters of their rapid antigen test results to their state public health departments (30 965 tests reported of 41 465 total test results [75.0%]). The reporting behavior varied by community and was significantly higher among communities that were incentivized for reporting test results vs those that were not incentivized or partially incentivized (90.5% [95% CI, 89.9%-91.2%] vs 70.5%; [95% CI, 70.0%-71.0%]). In all communities, positive tests were less frequently reported than negative tests (60.4% [95% CI, 58.1%-62.8%] vs 75.5% [95% CI, 75.1%-76.0%]). These results suggest that application-based reporting with incentives may be associated with increased reporting of rapid tests for COVID-19. However, increasing the adoption of the digital assistant may be a critical first step.
Performance of and Severe Acute Respiratory Syndrome Coronavirus 2 Diagnostics Based on Symptom Onset and Close Contact Exposure: An Analysis From the Test Us at Home Prospective Cohort Study
Understanding changes in diagnostic performance after symptom onset and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure within different populations is crucial to guide the use of diagnostics for SARS-CoV-2. The Test Us at Home study was a longitudinal cohort study that enrolled individuals across the United States between October 2021 and February 2022. Participants performed paired antigen-detection rapid diagnostic tests (Ag-RDTs) and reverse-transcriptase polymerase chain reaction (RT-PCR) tests at home every 48 hours for 15 days and self-reported symptoms and known coronavirus disease 2019 exposures immediately before testing. The percent positivity for Ag-RDTs and RT-PCR tests was calculated each day after symptom onset and exposure and stratified by vaccination status, variant, age category, and sex. The highest percent positivity occurred 2 days after symptom onset (RT-PCR, 91.2%; Ag-RDT, 71.1%) and 6 days after exposure (RT-PCR, 91.8%; Ag-RDT, 86.2%). RT-PCR and Ag-RDT performance did not differ by vaccination status, variant, age category, or sex. The percent positivity for Ag-RDTs was lower among exposed, asymptomatic than among symptomatic individuals (37.5% (95% confidence interval [CI], 13.7%-69.4%) vs 90.3% (75.1%-96.7%). Cumulatively, Ag-RDTs detected 84.9% (95% CI, 78.2%-89.8%) of infections within 4 days of symptom onset. For exposed participants, Ag-RDTs detected 94.0% (95% CI, 86.7%-97.4%) of RT-PCR-confirmed infections within 6 days of exposure. The percent positivity for Ag-RDTs and RT-PCR tests was highest 2 days after symptom onset and 6 days after exposure, and performance increased with serial testing. The percent positivity of Ag-RDTs was lowest among asymptomatic individuals but did not differ by sex, variant, vaccination status, or age category.