Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Helba, Brian"
Sort by:
A patient-centric dataset of images and metadata for identifying melanomas using clinical context
by
Kurtansky, Nicholas
,
Codella, Noel
,
Malvehy, Josep
in
692/1807/1812
,
692/699/67/1813
,
Artificial Intelligence
2021
Prior skin image datasets have not addressed patient-level information obtained from multiple skin lesions from the same patient. Though artificial intelligence classification algorithms have achieved expert-level performance in controlled studies examining single images, in practice dermatologists base their judgment holistically from multiple lesions on the same patient. The 2020 SIIM-ISIC Melanoma Classification challenge dataset described herein was constructed to address this discrepancy between prior challenges and clinical practice, providing for each image in the dataset an identifier allowing lesions from the same patient to be mapped to one another. This patient-level contextual information is frequently used by clinicians to diagnose melanoma and is especially useful in ruling out false positives in patients with many atypical nevi. The dataset represents 2,056 patients (20.8% with at least one melanoma, 79.2% with zero melanomas) from three continents with an average of 16 lesions per patient, consisting of 33,126 dermoscopic images and 584 (1.8%) histopathologically confirmed melanomas compared with benign melanoma mimickers.
Measurement(s)
melanoma • Skin Lesion
Technology Type(s)
Dermoscopy • digital curation
Factor Type(s)
approximate age • sex • anatomic site
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.13070345
Journal Article
Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study
2019
Whether machine-learning algorithms can diagnose all pigmented skin lesions as accurately as human experts is unclear. The aim of this study was to compare the diagnostic accuracy of state-of-the-art machine-learning algorithms with human readers for all clinically relevant types of benign and malignant pigmented skin lesions.
For this open, web-based, international, diagnostic study, human readers were asked to diagnose dermatoscopic images selected randomly in 30-image batches from a test set of 1511 images. The diagnoses from human readers were compared with those of 139 algorithms created by 77 machine-learning labs, who participated in the International Skin Imaging Collaboration 2018 challenge and received a training set of 10 015 images in advance. The ground truth of each lesion fell into one of seven predefined disease categories: intraepithelial carcinoma including actinic keratoses and Bowen's disease; basal cell carcinoma; benign keratinocytic lesions including solar lentigo, seborrheic keratosis and lichen planus-like keratosis; dermatofibroma; melanoma; melanocytic nevus; and vascular lesions. The two main outcomes were the differences in the number of correct specific diagnoses per batch between all human readers and the top three algorithms, and between human experts and the top three algorithms.
Between Aug 4, 2018, and Sept 30, 2018, 511 human readers from 63 countries had at least one attempt in the reader study. 283 (55·4%) of 511 human readers were board-certified dermatologists, 118 (23·1%) were dermatology residents, and 83 (16·2%) were general practitioners. When comparing all human readers with all machine-learning algorithms, the algorithms achieved a mean of 2·01 (95% CI 1·97 to 2·04; p<0·0001) more correct diagnoses (17·91 [SD 3·42] vs 19·92 [4·27]). 27 human experts with more than 10 years of experience achieved a mean of 18·78 (SD 3·15) correct answers, compared with 25·43 (1·95) correct answers for the top three machine algorithms (mean difference 6·65, 95% CI 6·06–7·25; p<0·0001). The difference between human experts and the top three algorithms was significantly lower for images in the test set that were collected from sources not included in the training set (human underperformance of 11·4%, 95% CI 9·9–12·9 vs 3·6%, 0·8–6·3; p<0·0001).
State-of-the-art machine-learning classifiers outperformed human experts in the diagnosis of pigmented skin lesions and should have a more important role in clinical practice. However, a possible limitation of these algorithms is their decreased performance for out-of-distribution images, which should be addressed in future research.
None.
Journal Article
BCN20000: Dermoscopic Lesions in the Wild
by
Podlipnik, Sebastian
,
Codella, Noel C. F.
,
Hernández-Pérez, Carlos
in
631/67
,
692/699/67/1813/1634
,
Artificial Intelligence
2024
Advancements in dermatological artificial intelligence research require high-quality and comprehensive datasets that mirror real-world clinical scenarios. We introduce a collection of 18,946 dermoscopic images spanning from 2010 to 2016, collated at the Hospital Clínic in Barcelona, Spain. The BCN20000 dataset aims to address the problem of unconstrained classification of dermoscopic images of skin cancer, including lesions in hard-to-diagnose locations such as those found in nails and mucosa, large lesions which do not fit in the aperture of the dermoscopy device, and hypo-pigmented lesions. Our dataset covers eight key diagnostic categories in dermoscopy, providing a diverse range of lesions for artificial intelligence model training. Furthermore, a ninth out-of-distribution (OOD) class is also present on the test set, comprised of lesions which could not be distinctively classified as any of the others. By providing a comprehensive collection of varied images, BCN20000 helps bridge the gap between the training data for machine learning models and the day-to-day practice of medical practitioners. Additionally, we present a set of baseline classifiers based on state-of-the-art neural networks, which can be extended by other researchers for further experimentation.
Journal Article
Computational Modeling of Macrophage Iron Sequestration during Host Defense against Aspergillus
by
Scindia, Yogesh
,
Sordo Vieira, Luis
,
Wheeler, Matthew
in
Antifungal agents
,
Aspergillosis
,
Aspergillus
2022
Invasive pulmonary aspergillosis is a major cause of death among immunosuppressed individuals despite the best available therapy. Depriving the pathogen of iron is an essential component of host defense in this infection, but the mechanisms by which the host achieves this are complex. Iron is essential to the virulence of Aspergillus species, and restricting iron availability is a critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron sequestration from pathogens. To gain an integrated understanding of how this is achieved in aspergillosis, we generated a transcriptomic time series of the response of human monocyte-derived macrophages to Aspergillus and used this and the available literature to construct a mechanistic computational model of iron handling of macrophages during this infection. We found an overwhelming macrophage response beginning 2 to 4 h after exposure to the fungus, which included upregulated transcription of iron import proteins transferrin receptor-1, divalent metal transporter-1, and ZIP family transporters, and downregulated transcription of the iron exporter ferroportin. The computational model, based on a discrete dynamical systems framework, consisted of 21 3-state nodes, and was validated with additional experimental data that were not used in model generation. The model accurately captures the steady state and the trajectories of most of the quantitatively measured nodes. In the experimental data, we surprisingly found that transferrin receptor-1 upregulation preceded the induction of inflammatory cytokines, a feature that deviated from model predictions. Model simulations suggested that direct induction of transferrin receptor-1 (TfR1) after fungal recognition, independent of the iron regulatory protein-labile iron pool (IRP-LIP) system, explains this finding. We anticipate that this model will contribute to a quantitative understanding of iron regulation as a fundamental host defense mechanism during aspergillosis. IMPORTANCE Invasive pulmonary aspergillosis is a major cause of death among immunosuppressed individuals despite the best available therapy. Depriving the pathogen of iron is an essential component of host defense in this infection, but the mechanisms by which the host achieves this are complex. To understand how recruited macrophages mediate iron deprivation during the infection, we developed and validated a mechanistic computational model that integrates the available information in the field. The insights provided by this approach can help in designing iron modulation therapies as anti-fungal treatments.
Journal Article
Publisher Correction: Author Correction: A patient-centric dataset of images and metadata for identifying melanomas using clinical context
by
Kurtansky, Nicholas
,
Codella, Noel
,
Malvehy, Josep
in
692/1807/1812
,
692/699/67/1813
,
Humanities and Social Sciences
2021
A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00879-x.
Journal Article
Author Correction: A patient-centric dataset of images and metadata for identifying melanomas using clinical context
2021
A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00865-3.
Journal Article
Computational modeling of macrophage iron sequestration during host defense against Aspergillus
by
Scindia, Yogesh
,
Wheeler, Matthew
,
Henrique De Assis Lopes Ribeiro
in
Aspergillosis
,
Aspergillus
,
Computer applications
2022
Iron is essential to the virulence of Aspergillus species, and restricting iron availability is a critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron sequestration from pathogens. To gain an integrated understanding of how this is achieved in invasive aspergillosis, we generated a transcriptomic time-series of the response of human monocyte-derived macrophages to Aspergillus and used this and the available literature to construct a mechanistic computational model of iron handling of macrophages during this infection. We found an overwhelming macrophage response beginning 2-4 hours after exposure to the fungus, which included upregulated transcription of iron import proteins transferrin receptor-1, divalent metal transporter-1, and ZIP family transporters, and downregulated transcription of the iron exporter ferroportin. The computational model, based on a discrete dynamical systems framework, consisted of 21 3-state nodes, and was validated with additional experimental data that were not used in model generation. The model accurately captures the steady state and the trajectories of most of the quantitatively measured nodes. In the experimental data, we surprisingly found that transferrin receptor-1 upregulation preceded the induction of inflammatory cytokines, a feature that deviated from model predictions. Model simulations suggested that direct induction of TfR1 after fungal recognition, independent of the Iron Regulatory Protein - Labile Iron Pool system, explains this finding. We anticipate that this model will contribute to a quantitative understanding of iron regulation as a fundamental host defense mechanism during aspergillosis.
BCN20000: Dermoscopic Lesions in the Wild
2019
This article summarizes the BCN20000 dataset, composed of 19424 dermoscopic images of skin lesions captured from 2010 to 2016 in the facilities of the Hospital Clínic in Barcelona. With this dataset, we aim to study the problem of unconstrained classification of dermoscopic images of skin cancer, including lesions found in hard-to-diagnose locations (nails and mucosa), large lesions which do not fit in the aperture of the dermoscopy device, and hypo-pigmented lesions. The BCN20000 will be provided to the participants of the ISIC Challenge 2019, where they will be asked to train algorithms to classify dermoscopic images of skin cancer automatically.
Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC)
2019
The International Skin Imaging Collaboration (ISIC) is a global partnership that has organized the world's largest public repository of dermoscopic images of skin lesions. This archive has been used for 3 consecutive years to host challenges on skin lesion analysis toward melanoma detection, covering 3 analysis tasks of lesion segmentation, lesion attribute detection, and disease classification. The most recent instance in 2018 was hosted at the Medical Image Computing and Computer Assisted Intervention (MICCAI) conference in Granada, Spain. The dataset included over 10,000 images. Approximately 900 users registered for data download, 115 submitted to the lesion segmentation task, 25 submitted to the lesion attribute detection task, and 159 submitted to the disease classification task, making this the largest study in the field to date. Important new analyses were introduced to better reflect the difficulties of translating research systems to clinical practice. This article summarizes the results of these analyses, and makes recommendations for future challenges in medical imaging.
Deep Learning Ensembles for Melanoma Recognition in Dermoscopy Images
2016
Melanoma is the deadliest form of skin cancer. While curable with early detection, only highly trained specialists are capable of accurately recognizing the disease. As expertise is in limited supply, automated systems capable of identifying disease could save lives, reduce unnecessary biopsies, and reduce costs. Toward this goal, we propose a system that combines recent developments in deep learning with established machine learning approaches, creating ensembles of methods that are capable of segmenting skin lesions, as well as analyzing the detected area and surrounding tissue for melanoma detection. The system is evaluated using the largest publicly available benchmark dataset of dermoscopic images, containing 900 training and 379 testing images. New state-of-the-art performance levels are demonstrated, leading to an improvement in the area under receiver operating characteristic curve of 7.5% (0.843 vs. 0.783), in average precision of 4% (0.649 vs. 0.624), and in specificity measured at the clinically relevant 95% sensitivity operating point 2.9 times higher than the previous state-of-the-art (36.8% specificity compared to 12.5%). Compared to the average of 8 expert dermatologists on a subset of 100 test images, the proposed system produces a higher accuracy (76% vs. 70.5%), and specificity (62% vs. 59%) evaluated at an equivalent sensitivity (82%).