Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Hendrickx, Sirine"
Sort by:
Recessive TMEM167A variants cause neonatal diabetes, microcephaly, and epilepsy syndrome
Understanding the genetic causes of diseases that affect pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy, and diabetes syndrome (MEDS) is a congenital disorder with two known etiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking. We used genome sequencing to identify 6 individuals with MEDS caused by biallelic variants in the potentially novel disease gene TMEM167A. All had neonatal diabetes (diagnosed at <6 months) and severe microcephaly, and 5 also had epilepsy. TMEM167A is highly expressed in developing and adult human pancreas and brain. To gain insights into the mechanisms leading to diabetes, we silenced TMEM167A in EndoC-βH1 cells and knocked-in one patient's variant, p.Val59Glu, in induced pluripotent stem cells (iPSCs). Both TMEM167A depletion in EndoC-βH1 cells and the p.Val59Glu variant in iPSC-derived β cells sensitized β cells to ER stress. The p.Val59Glu variant impaired proinsulin trafficking to the Golgi and induced iPSC-β cell dysfunction. The discovery of TMEM167A variants as a genetic cause of MEDS highlights a critical role of TMEM167A in the ER to Golgi pathway in β cells and neurons.