Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Henschler, Reinhard"
Sort by:
Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells
Mesenchymal stem/stromal cells (MSCs) are increasingly used as an intravenously applied cellular therapeutic. They were found to be potent in situations such as tissue repair or severe inflammation. Still, data are lacking with regard to the biodistribution of MSCs, their cellular or molecular target structures, and the mechanisms by which MSCs reach these targets. This review discusses current hypotheses for how MSCs can reach tissue sites. Both preclinical and clinical studies using MSCs applied intravenously or intra-arterially are discussed in the context of our current understanding of how MSCs might work in physiological and pathological situations.
Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions
Ex vivo expansion of T lymphocytes is a central process in the generation of cellular therapies targeted at tumors and other disease-relevant structures, which currently cannot be reached by established pharmaceuticals. The influence of culture conditions on T cell functions is, however, incompletely understood. In clinical applications of ex vivo expanded T cells, so far, a relatively classical standard cell culture methodology has been established. The expanded cells have been characterized in both preclinical models and clinical studies mainly using a therapeutic endpoint, for example antitumor response and cytotoxic function against cellular targets, whereas the influence of manipulations of T cells ex vivo including transduction and culture expansion has been studied to a much lesser detail, or in many contexts remains unknown. This includes the circulation behavior of expanded T cells after intravenous application, their intracellular metabolism and signal transduction, and their cytoskeletal (re)organization or their adhesion, migration, and subsequent intra-tissue differentiation. This review aims to provide an overview of established T cell expansion methodologies and address unanswered questions relating in vivo interaction of ex vivo expanded T cells for cellular therapy.
Predictors for blood loss and transfusion frequency to guide blood saving programs in primary knee- and hip-arthroplasty
Endoprosthetic surgery can lead to relevant blood loss resulting in red blood cell (RBC) transfusions. This study aimed to identify risk factors for blood loss and RBC transfusion that enable the prediction of an individualized transfusion probability to guide preoperative RBC provision and blood saving programs. A retrospective analysis of patients who underwent primary hip or knee arthroplasty was performed. Risk factors for blood loss and transfusions were identified and transfusion probabilities computed. The number needed to treat (NNT) of a potential correction of preoperative anemia with iron substitution for the prevention of RBC transfusion was calculated. A total of 308 patients were included, of whom 12 (3.9%) received RBC transfusions. Factors influencing the maximum hemoglobin drop were the use of drain, tranexamic acid, duration of surgery, anticoagulation, BMI, ASA status and mechanical heart valves. In multivariate analysis, the use of a drain, low preoperative Hb and mechanical heart valves were predictors for RBC transfusions. The transfusion probability of patients with a hemoglobin of 9.0–10.0 g/dL, 10.0–11.0 g/dL, 11.0–12.0 g/dL and 12.0–13.0 g/dL was 100%, 33.3%, 10% and 5.6%, and the NNT 1.5, 4.3, 22.7 and 17.3, while it was 100%, 50%, 25% and 14.3% with a NNT of 2.0, 4.0, 9.3 and 7.0 in patients with a drain, respectively. Preoperative anemia and the insertion of drains are more predictive for RBC transfusions than the use of tranexamic acid. Based on this, a personalized transfusion probability can be computed, that may help to identify patients who could benefit from blood saving programs.
Rap1 Guanosine Triphosphate Hydrolase (GTPase) Regulates Shear Stress-Mediated Adhesion of Mesenchymal Stromal Cells
Intravenously transplanted mesenchymal stromal cells (MSCs) have been shown to interact with endothelial cells and to migrate to tissues. However, intracellular signals regulating MSC migration are still incompletely understood. Here, we analyzed the role of Rap1 GTPase in the migration of human bone marrow-derived MSCs in vitro and in short-term homing in mice in vivo. MSCs expressed both Rap1A and Rap1B mRNAs, which were downregulated after treatment with siRNA against Rap1A and/or B. In a flow chamber model with pre-established human umbilical vein endothelial cells (HUVECs), Rap1A/B downregulated MSCs interacted for longer distances before arrest, indicating adhesion defects. CXCL12-induced adhesion of MSCs on immobilized Vascular Cell Adhesion Molecule (VCAM)-1 was also decreased after the downregulation of Rap1A, Rap1B, or both, as was CXCL12-induced transwell migration. In a competitive murine short-term homing model with i.v. co-injection of Rap1A+B siRNA-treated and control MSCs that were labeled with PKH 26 and PKH 67 fluorescent dyes, the Rap1A+B siRNA-treated MSCs were detected at increased frequencies in blood, liver, and spleen compared to control MSCs. Thus, Rap1 GTPase modulates the adhesion and migration of MSCs in vitro and may increase the bio-availability of i.v.-transplanted MSCs in tissues in a murine model.
Extended genomic HLA typing identifies previously unrecognized mismatches in living kidney transplantation
Antibody mediated rejection (ABMR) is the most common cause of long-term allograft loss in kidney transplantation (KT). Therefore, a low human leukocyte antigen (HLA) mismatch (MM) load is favorable for KT outcomes. Hitherto, serological or low-resolution molecular HLA typing have been adapted in parallel. Here, we aimed to identify previously missed HLA mismatches and corresponding antibodies by high resolution HLA genotyping in a living-donor KT cohort. 103 donor/recipient pairs transplanted at the University of Leipzig Medical Center between 1998 and 2018 were re-typed using next generation sequencing (NGS) of the HLA loci -A, -B, -C, -DRB1, -DRB345, -DQA1, -DQB1, -DPA1, and -DPB1. Based on these data, we compiled HLA MM counts for each pair and comparatively evaluated genomic HLA-typing with pre-transplant obtained serological/low-resolution HLA (=one-field) typing results. NGS HLA typing (=two-field) data was further used for reclassification of HLA antibodies as \"donor-specific\". By two-field HLA re-typing, we were able to identify additional MM in 64.1% (n=66) of cases for HLA loci -A, -B, -C, -DRB1 and -DQB1 that were not observed by one-field HLA typing. In patients with biopsy proven ABMR, two-field calculated MM count was significantly higher than by one-field HLA typing. For additional typed HLA loci -DRB345, -DQA1, -DPA1, and -DPB1 we observed 2, 26, 3, and 23 MM, respectively. In total, 37.3% (69/185) of donor specific antibodies (DSA) formation was directed against these loci (DRB345 ➔ n=33, DQA1 ➔ n=33, DPA1 ➔ n=1, DPB1 ➔ n=10). Our results indicate that two-field HLA typing is feasible and provides significantly more sensitive HLA MM recognition in living-donor KT. Furthermore, accurate HLA typing plays an important role in graft management as it can improve discrimination between donor and non-donor HLA directed cellular and humoral alloreactivity in the long range. The inclusion of additional HLA loci against which antibodies can be readily detected, HLA-DRB345, -DQA1, -DQB1, -DPA1, and -DPB1, will allow a more precise virtual crossmatch and better prediction of potential DSA. Furthermore, in living KT, two-field HLA typing could contribute to the selection of the immunologically most suitable donors.
Total Thrombus-Formation System in Patients with Peripheral Artery Disease
The Total Thrombus-formation Analysis System (T-TAS) is an automated device using coated microchips to assess thrombus formation under flow conditions. Its value to monitor coagulation function in patients under antiplatelet therapy awaits further clarification. This study evaluated T-TAS to detect response to dual antiplatelet therapy (DAPT) in patients with peripheral artery disease (PAD). T-TAS using the platelet-chip (PL-chip) and atheroma-chip (AR-chip) was performed in 60 patients with PAD on the day after lower extremity revascularization. Results were compared with light transmission aggregometry (LTA) and multiple electrode aggregometry (MEA, ADP- and ASPI-test). To determine T-TAS reference ranges, 30 healthy blood donors were enrolled. The area under the curve of the PL-chip (AUC-PL) was outside the reference range in 91.2% and AUC-AR in 21.1% of the PAD patients. Low responders in MEA ASPI, MEA ADP or both tests and low responders in LTA induced by ADP had a significantly higher AUC-PL compared to responders (204 vs 70, p = .016 and 140 vs 32, p < .001), respectively. Median AUC-PL in low responders in LTA and MEA, LTA or MEA and in responders in LTA and MEA was 301, 104 and 32 (p = .001), respectively. Our results suggest that the PL-chip can continuously assess the level of response to DAPT and might be helpful to monitor PAD patients.
Prevalence of pemphigus and pemphigoid autoantibodies in the general population
Background Mucocutaneous blistering is characteristic of autoimmune bullous dermatoses (AIBD). Blisters are caused by autoantibodies directed against structural components of the skin. Hence, detection of specific autoantibodies has become a hallmark for AIBD diagnosis. Studies on prevalence of AIBD autoantibodies in healthy individuals yielded contradictory results. Methods To clarify this, samples from 7063 blood donors were tested for presence of anti-BP180-NC16A, anti-BP230 and anti-Dsg1/3 IgG by indirect immunofluorescence (IF) microscopy using a biochip. Results Cumulative prevalence of these autoantibodies was 0.9 % (CI: 0.7–1.1 %), with anti-BP180-NC16A IgG being most prevalent. Validation of IF findings using ELISA confirmed presence of autoantibodies in 7/15 (anti-Dsg1), 6/7 (anti-Dsg3), 35/37 (anti-BP180-NC16A) and 2/3 (anti-BP230) cases. Moreover, in 16 samples, anti-BP180-NC16A autoantibody concentrations exceeded the cut-off for the diagnosis of bullous pemphigoid. Interestingly, these anti-BP180-NC16A autoantibodies from healthy individuals formed immune complexes with recombinant antigen and dose-dependently activated neutrophils in vitro . However, fine-epitope mapping within NC16A showed a different binding pattern of anti-BP180-NC16A autoantibodies from healthy individuals compared to bullous pemphigoid patients, while IgG subclasses were identical. Conclusions Collectively, we here report a low prevalence of AIBD autoantibodies in a large cohort of healthy individuals. Furthermore, functional analysis shows differences between autoantibodies from healthy donors and AIBD patients.
In vitro differentiation of human mesenchymal stem cells to epithelial lineage
Our study examined whether human bone marrow‐derived MSCs are able to differentiate, in vitro, into functional epithelial‐like cells. MSCs were isolated from the sternum of 8 patients with different hematological disorders. The surface phenotype of these cells was characterized.To induce epithelial differentiation, MSCs were cultured using Epidermal Growth Factor, Keratinocyte Growth Factor, Hepatocyte Growth Factor and Insulin‐like growth Factor‐II. Differentiated cells were further characterized both morphologically and functionally by their capacity to express markers with specificity for epithelial lineage. The expression of cytokeratin 19 was assessed by immunocytochemistry, and cytokeratin 18 was evaluated by quantitative RT‐PCR (Taq‐man). The data demonstrate that human MSCs isolated from human bone marrow can differentiate into epithelial‐like cells and may thus serve as a cell source for tissue engineering and cell therapy of epithelial tissue.
Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34^(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction
Mesenchymal stem/stromal cells (MSCs) represent a promising cell source for research and therapeutic applications, but their restricted ex vivo propagation capabilities limit putative applications. Substantial self-renewing of stem cells can be achieved by reprogramming cells into induced pluripotent stem cells (iPSCs) that can be easily expanded as undifferentiated cells even in mass culture. Here, we investigated a differentiation protocol enabling the generation and selection of human iPSC-derived MSCs exhibiting relevant surface marker expression profiles (CD105 and CD73) and functional characteristics. We generated such iPSC-MSCs from fibroblasts and bone marrow MSCs utilizing two different reprogramming constructs. All such iPSC-MSCs exhibited the characteristics of normal bone marrow-derived (BM) MSCs. In direct comparison to BM-MSCs our iPSC-MSCs exhibited a similar surface marker expression profile but shorter doubling times without reaching senescence within 20 passages. Considering functional capabilities, iPSC-MSCs provided supportive feeder layer for CD34(+) hematopoietic stem cells' self-renewal and colony forming capacities. Furthermore, iPSC-MSCs gained immunomodulatory function to suppress CD4(+) cell proliferation, reduce proinflammatory cytokines in mixed lymphocyte reaction, and increase regulatory CD4(+)/CD69(+)/CD25(+) T-lymphocyte population. In conclusion, we generated fully functional MSCs from various iPSC lines irrespective of their starting cell source or reprogramming factor composition and we suggest that such iPSC-MSCs allow repetitive cell applications for advanced therapeutic approaches.
Changes in the microRNA expression profile during blood storage
ObjectivesFor several decades, autologous blood doping (ABD) in sports has been a major problem, and even today there is still no reliable method for satisfactorily detecting ABD. For this kind of doping, stored individual erythrocytes are used to increase stamina and endurance caused by a higher erythrocyte level in the athlete’s body. Since there is growing evidence that these cells are enriched with microRNAs (miRNAs), this study has been carried out to discover and validate all miRNAs occurring in fresh blood as well as in stored blood.MethodsTherefore, small RNA Next Generation Sequencing has been performed, which allows untargeted detection of all miRNAs in a blood sample. The focus of this investigation has been to find miRNA alterations in blood bags after erythrocyte processing and during storage, as compared with fresh blood directly withdrawn from subjects. Blood samples were obtained from 12 healthy, recreationally active male subjects three times before blood donation and from blood bags at several time points after blood processing.Results189 miRNAs have been considered stable over two consecutive weeks. A further analysis revealed a complex biomarker signature of 28 miRNAs, consisting of 6 miRNAs that altered during 6 weeks of storage and 22 miRNAs that altered due to processing.ConclusionThese results suggest that the identified miRNA biomarker signature may be used for the detection of ABD. These 28 miRNA candidates are tested and verified currently in a follow-up study, a human transfusion clinical trial in healthy sportsmen.