Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
91
result(s) for
"Henson, Peter M."
Sort by:
Monocyte differentiation and antigen-presenting functions
by
Randolph, Gwendalyn J.
,
Jakubzick, Claudia V.
,
Henson, Peter M.
in
631/250/21/1293
,
631/250/2504/342
,
Adaptive Immunity
2017
Key Points
Constitutively migrating LY6C
+
monocytes can retain their own properties without differentiating into a bone fide macrophage or dendritic cell.
Monocytes can replenish tissue-specific macrophages if a residential macrophage niche opens.
Monocytes are as abundant as dendritic cell subsets in human and mouse lymph nodes in the steady state, and they are more abundant during inflammation.
Monocytes are antigen-presenting cells that load antigen on MHC class I and II molecules and prime CD8
+
and CD4
+
T cells.
Monocytes have both pro-inflammatory and anti-inflammatory properties.
Monocytes show plasticity and can differentiate into many different cell types in a manner that is dictated by the tissue environment.
Monocytes not only serve as precursors for macrophages, but also contribute to tissue immunity by presenting antigen to T cells and producing immunomodulatory mediators. In this Review, the authors discuss some of these less well-appreciated immune functions of monocytes.
Monocytes develop in the bone marrow and represent the primary type of mononuclear phagocyte found in the blood. They were long thought of as a source for tissue macrophages, but recent studies indicate more complex roles for monocytes, both within the circulation and after their migration into tissues and lymphoid organs. In this Review, we discuss the newer concepts underlying the maturation of emigrating monocytes into different classes of tissue macrophages, as well as their potential functions, as monocyte-derived cells, in the tissues. In addition, we consider the emerging roles for monocytes in adaptive immunity as antigen-presenting cells.
Journal Article
Deletion of c-FLIP from CD11bhi Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis
2018
Idiopathic pulmonary fibrosis is a progressive lung disease with complex pathophysiology and fatal prognosis. Macrophages (MΦ) contribute to the development of lung fibrosis; however, the underlying mechanisms and specific MΦ subsets involved remain unclear.During lung injury, two subsets of lungMΦcoexist: Siglec-Fhi resident alveolar MΦ and a mixed population of CD11bhi MΦ that primarily mature from immigrating monocytes. Using a novel inducible transgenic system driven by a fragment of the human CD68 promoter, we targeted deletion of the antiapoptotic protein cellular FADD-like IL-1β-converting enzyme-inhibitory protein (c-FLIP) to CD11bhi MΦ. Upon loss of c-FLIP, CD11bhi MΦ became susceptible to cell death. Using this system, we were able to show that eliminating CD11bhi MΦ present 7-14 days after bleomycin injury was sufficient to protect mice from fibrosis. RNA-seq analysis of lung MΦ present during this time showed that CD11bhi MΦ, but not Siglec-Fhi MΦ, expressed high levels of profibrotic chemokines and growth factors. Human MΦ from patients with idiopathic pulmonary fibrosis expressed many of the same profibrotic chemokines identified in murine CD11bhi MΦ. Elimination of monocyte-derived MΦ may help in the treatment of fibrosis. We identify c-FLIP and the associated extrinsic cell death program as a potential pathway through which these profibrotic MΦ may be pharmacologically targeted.
Journal Article
Antiinflammatory effects of apoptotic cells
2013
Apoptotic cells are rapidly phagocytosed by macrophages, a process that represents a critical step in tissue remodeling, immune responses, and the resolution of inflammation. In 1998, Peter Henson, Donna Bratton, and colleagues at National Jewish Health demonstrated that phagocytosis of apoptotic cells actively suppresses inflammation by inhibiting the production of inflammatory cytokines and inducing production of antiinflammatory factors, including TGF-β and prostaglandin E2. Here they discuss the evolving relationship among apoptosis, phagocytosis, and inflammation.
Journal Article
Unbiased Quantitation of Alveolar Type II to Alveolar Type I Cell Transdifferentiation during Repair after Lung Injury in Mice
by
Jansing, Nicole L.
,
McClendon, Jazalle
,
Henson, Peter M.
in
Alveolar Epithelial Cells - pathology
,
Alveoli
,
Animals
2017
The alveolar epithelium consists of squamous alveolar type (AT) I and cuboidal ATII cells. ATI cells cover 95-98% of the alveolar surface, thereby playing a critical role in barrier integrity, and are extremely thin, thus permitting efficient gas exchange. During lung injury, ATI cells die, resulting in increased epithelial permeability. ATII cells re-epithelialize the alveolar surface via proliferation and transdifferentiation into ATI cells. Transdifferentiation is characterized by down-regulation of ATII cell markers, up-regulation of ATI cell markers, and cell spreading, resulting in a change in morphology from cuboidal to squamous, thus restoring normal alveolar architecture and function. The mechanisms underlying ATII to ATI cell transdifferentiation have not been well studied in vivo. A prerequisite for mechanistic investigation is a rigorous, unbiased method to quantitate this process. Here, we used SPCCreERT2;mTmG mice, in which ATII cells and their progeny express green fluorescent protein (GFP), and applied stereologic techniques to measure transdifferentiation during repair after injury induced by LPS. Transdifferentiation was quantitated as the percent of alveolar surface area covered by ATII-derived (GFP
) cells expressing ATI, but not ATII, cell markers. Using this methodology, the time course and magnitude of transdifferentiation during repair was determined. We found that ATI cell loss and epithelial permeability occurred by Day 4, and ATII to ATI cell transdifferentiation began by Day 7 and continued until Day 16. Notably, transdifferentiation and barrier restoration are temporally correlated. This methodology can be applied to investigate the molecular mechanisms underlying transdifferentiation, ultimately revealing novel therapeutic targets to accelerate repair after lung injury.
Journal Article
Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes
2016
The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors.
Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs.
We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery.
We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood.
Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.
Journal Article
Neutrophil transmigration triggers repair of the lung epithelium via β-catenin signaling
2011
Injury to the epithelium is integral to the pathogenesis of many inflammatory lung diseases, and epithelial repair is a critical determinant of clinical outcome. However, the signaling pathways regulating such repair are incompletely understood. We used in vitro and in vivo models to define these pathways. Human neutrophils were induced to transmigrate across monolayers of human lung epithelial cells in the physiological basolateral-to-apical direction. This allowed study of the neutrophil contribution not only to the initial epithelial injury, but also to its repair, as manifested by restoration of transepithelial resistance and reepithelialization of the denuded epithelium. Microarray analysis of epithelial gene expression revealed that neutrophil transmigration activated β-catenin signaling, and this was verified by real-time PCR, nuclear translocation of β-catenin, and TOPFlash reporter activity. Leukocyte elastase, likely via cleavage of E-cadherin, was required for activation of β-catenin signaling in response to neutrophil transmigration. Knockdown of β-catenin using shRNA delayed epithelial repair. In mice treated with intratracheal LPS or keratinocyte chemokine, neutrophil emigration resulted in activation of β-catenin signaling in alveolar type II epithelial cells, as demonstrated by cyclin D1 expression and/or reporter activity in TOPGAL mice. Attenuation of β-catenin signaling by IQ-1 inhibited alveolar type II epithelial cell proliferation in response to neutrophil migration induced by intratracheal keratinocyte chemokine. We conclude that β-catenin signaling is activated in lung epithelial cells during neutrophil transmigration, likely via elastase-mediated cleavage of E-cadherin, and regulates epithelial repair. This pathway represents a potential therapeutic target to accelerate physiological recovery in inflammatory lung diseases.
Journal Article
TNFα: TNFR1 signaling inhibits maturation and maintains the pro-inflammatory programming of monocyte-derived macrophages in murine chronic granulomatous disease
by
Haist, Kelsey C
,
Henson, Peter M
,
Bratton, Donna L
in
Adoptive transfer
,
Antibodies
,
Cell culture
2024
IntroductionLoss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming.MethodsWe sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation.ResultsMore extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo . Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1β, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo .DiscussionThese data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.
Journal Article
A receptor for phosphatidylserine-specific clearance of apoptotic cells
by
Ezekewitz, R. Alan B.
,
Pearson, Alan
,
Fadok, Valerie A.
in
Ageing, cell death
,
Amino Acid Sequence
,
Animals
2000
The culmination of apoptosis
in vivo
is phagocytosis of cellular corpses. During apoptosis, the asymmetry of plasma membrane phospholipids is lost, which exposes phosphatidylserine externally
1
,
2
,
3
,
4
. The phagocytosis of apoptotic cells can be inhibited stereospecifically by phosphatidylserine and its structural analogues, but not by other anionic phospholipids, suggesting that phosphatidylserine is specifically recognized
1
,
5
,
6
,
7
,
8
,
9
,
10
. Using phage display, we have cloned a gene that appears to recognize phosphatidylserine on apoptotic cells. Here we show that this gene, when transfected into B and T lymphocytes, enables them to recognize and engulf apoptotic cells in a phosphatidylserine-specific manner. Flow cytometric analysis using a monoclonal antibody suggested that the protein is expressed on the surface of macrophages, fibroblasts and epithelial cells; this antibody, like phosphatidylserine liposomes, inhibited the phagocytosis of apoptotic cells and, in macrophages, induced an anti-inflammatory state. This candidate phosphatidylserine receptor is highly homologous to genes of unknown function in
Caenorhabditis elegans
and
Drosophila melanogaster
, suggesting that phosphatidylserine recognition on apoptotic cells during their removal by phagocytes is highly conserved throughout phylogeny.
Journal Article
Cigarette Smoke Impairs Clearance of Apoptotic Cells through Oxidant-dependent Activation of RhoA
by
Linderman, Derek J
,
Morimoto, Konosuke
,
Richens, Tiffany R
in
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
,
Animals
,
Antioxidants
2009
Cigarette smoke (CS) is the primary cause of chronic obstructive pulmonary disease (COPD), an effect that is, in part, due to intense oxidant stress. Clearance of apoptotic cells (efferocytosis) is a critical regulator of lung homeostasis, which is defective in smokers and in patients with COPD, suggesting a role in disease pathogenesis.
We hypothesized that CS would impair efferocytosis through oxidant-dependent activation of RhoA, a known inhibitor of this process.
We investigated the effect of CS on efferocytosis in vivo and ex vivo, using acute, subacute, and long-term mouse exposure models.
Acute and subacute CS exposure suppressed efferocytosis by alveolar macrophages in a dose-dependent, reversible, and cell type-independent manner, whereas more intense CS exposure had an irreversible effect. In contrast, CS did not alter ingestion through the Fc gamma receptor. The inhibitory effect of CS on apoptotic cell clearance depended on oxidants, because the effect was blunted in oxidant-resistant ICR mice, and was prevented by either genetic or pharmacologic antioxidant strategies in vivo and ex vivo. CS inhibited efferocytosis through oxidant-dependent activation of the RhoA-Rho kinase pathway because (1) CS activated RhoA, (2) antioxidants prevented RhoA activation by CS, and (3) inhibitors of the RhoA-Rho kinase pathway reversed the suppressive effect of CS on apoptotic cell clearance in vivo and ex vivo.
These findings advance the hypothesis that impaired efferocytosis may contribute to the pathogenesis of COPD and suggest the therapeutic potential of drugs targeting the RhoA-Rho kinase pathway.
Journal Article
Induction of TGF-β1 Synthesis by Macrophages in Response to Apoptotic Cells Requires Activation of the Scavenger Receptor CD36
2013
Phosphatidylserine (PS) exposed on apoptotic cells has been shown to stimulate production of transforming growth factor-β (TGF-β) and promote anti-inflammatory responses. However, the PS receptor(s) responsible for this induction has not been clearly determined.
In the present study, using RAWTβRII cells in which a truncated dominant negative TGF-β receptor II was stably transfected in order to avoid auto-feedback induction of TGF-β, we show that TGF-β1 synthesis is initiated via activation of the scavenger receptor, CD36. The response requires exposure of PS on the apoptotic cell surface and was absent in macrophages lacking CD36. Direct activation of CD36 with an anti-CD36 antibody initiated TGF-β1 production, and signaling pathways involving both Lyn kinase and ERK1/2 were shown to participate in CD36-driven TGF-β1 expression.
Since CD36 has been previously implicated in activation of secreted latent TGF-β, the present study indicates its role in the multiple steps to generation of this important biological mediator.
Journal Article