Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
199 result(s) for "Heo, Soo Won"
Sort by:
Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics
Next-generation biomedical devices 1 – 9 will need to be self-powered and conformable to human skin or other tissue. Such devices would enable the accurate and continuous detection of physiological signals without the need for an external power supply or bulky connecting wires. Self-powering functionality could be provided by flexible photovoltaics that can adhere to moveable and complex three-dimensional biological tissues 1 – 4 and skin 5 – 9 . Ultra-flexible organic power sources 10 – 13 that can be wrapped around an object have proven mechanical and thermal stability in long-term operation 13 , making them potentially useful in human-compatible electronics. However, the integration of these power sources with functional electric devices including sensors has not yet been demonstrated because of their unstable output power under mechanical deformation and angular change. Also, it will be necessary to minimize high-temperature and energy-intensive processes 10 , 12 when fabricating an integrated power source and sensor, because such processes can damage the active material of the functional device and deform the few-micrometre-thick polymeric substrates. Here we realize self-powered ultra-flexible electronic devices that can measure biometric signals with very high signal-to-noise ratios when applied to skin or other tissue. We integrated organic electrochemical transistors used as sensors with organic photovoltaic power sources on a one-micrometre-thick ultra-flexible substrate. A high-throughput room-temperature moulding process was used to form nano-grating morphologies (with a periodicity of 760 nanometres) on the charge transporting layers. This substantially increased the efficiency of the organophotovoltaics, giving a high power-conversion efficiency that reached 10.5 per cent and resulted in a high power-per-weight value of 11.46 watts per gram. The organic electrochemical transistors exhibited a transconductance of 0.8 millisiemens and fast responsivity above one kilohertz under physiological conditions, which resulted in a maximum signal-to-noise ratio of 40.02 decibels for cardiac signal detection. Our findings offer a general platform for next-generation self-powered electronics. Detection of biometric signals by self-powered electronic devices that are highly flexible and can be applied to skin.
Vacuum-Free Fabrication Strategies for Nanostructure-Embedded Ultrathin Substrate in Flexible Polymer Solar Cells
In this paper, we discuss a method for fabricating an ultrathin polymer substrate with one-dimensional nanograting patterns to improve the power conversion efficiency (PCE) of ultrathin polymer solar cells (PSCs) and suppress the dependence on the incident angle of light. Because the fabricating process of the ultrathin polymer substrate was carried out using a solution process, it can be manufactured in a large area, and the PCE of the patterned ultrathin substrate-based PSC is improved by 8.9% compared to the non-patterned device. In addition, triple-patterned ultrathin PSCs incorporating the same nanograting pattern as the substrate were fabricated in the electron transport (ZnO) layer and the photoactive layer (PBDTTT-OFT and PC71BM mixture (ratio-1: 1.5)) to achieve PCE of 10.26%. Thanks to the nanograting pattern introduced in the substrate, ZnO layer, and photoactive layer, it was possible to minimize the PCE change according to the incident angle of light. Moreover, we performed 1000 cycles of compression/relaxation tests to evaluate the mechanical properties of the triple-patterned ultrathin PSCs, after which the PCE remained at 71% of the initial PCE.
Ultra-Flexible Organic Photovoltaics with Nanograting Patterns Based on CYTOP/Ag Nanowires Substrate
In this study, we developed a method for fabricating ultrathin polymer substrates that can be used in ultra-flexible organic photovoltaics (OPVs) via a non-vacuum process using cyclic transparent optical polymer. In addition, a Ag nanowire network layer was used as a transparent electrode in a solution process. All processes were conducted on large area via spin coating. The power conversion efficiency (PCE) of the ultra-flexible OPV improved by 6.4% compared to the PCE of the ITO/Glass-based OPV. In addition, the PCE of the OPV increased to 10.12% after introducing nanostructures in the ZnO and photoactive layers. We performed 1000 cycles of compression/relaxation tests to evaluate the mechanical properties of the ultra-flexible OPV, after which, the PCE remained at 67% of the initial value. Therefore, the developed OPV system is suitable as a power source for portable devices.
Ultra-Flexible Organic Solar Cell Based on Indium-Zinc-Tin Oxide Transparent Electrode for Power Source of Wearable Devices
We have developed a novel structure of ultra-flexible organic photovoltaics (UFOPVs) for application as a power source for wearable devices with excellent biocompatibility and flexibility. Parylene was applied as an ultra-flexible substrate through chemical vapor deposition. Indium-zinc-tin oxide (IZTO) thin film was used as a transparent electrode. The sputtering target composed of 70 at.% In2O3-15 at.% ZnO-15 at.% SnO2 was used. It was fabricated at room temperature, using pulsed DC magnetron sputtering, with an amorphous structure. UFOPVs, in which a 1D grating pattern was introduced into the hole-transport and photoactive layers were fabricated, showed a 13.6% improvement (maximum power conversion efficiency (PCE): 8.35%) compared to the reference device, thereby minimizing reliance on the incident angle of the light. In addition, after 1000 compression/relaxation tests with a compression strain of 33%, the PCE of the UFOPVs maintained a maximum of 93.3% of their initial value.
Optical Manipulation of Incident Light for Enhanced Photon Absorption in Ultrathin Organic Photovoltaics
We attempted to improve the photon absorption of the photoactive layer in organic photovoltaic (OPV) devices by device engineering without changing their thickness. Soft nanoimprinting lithography was used to introduce a 1D grating pattern into the photoactive layer. The increase in photocurrent caused by the propagating surface plasmon–polariton mode was quantitatively analyzed by measuring the external quantum efficiency in transverse magnetic and transverse electric modes. In addition, the introduction of an ultrathin substrate with a refractive index of 1.34 improved photon absorption by overcoming the mismatched optical impedance at the air/substrate interface. As a result, the power conversion efficiency (PCE) of an ultrathin OPV with a 400 nm grating period was 8.34%, which was 11.6% higher than that of an unpatterned ultrathin OPV, and the PCE was 3.2 times higher at a low incident light angle of 80°, indicating very low incident light angle dependence.
Antimicrobial, Antioxidative, Elastase and Tyrosinase Inhibitory Effect of Supercritical and Hydrothermal Halopteris scoparia Extract
To find out a good candidate of cosmetic source and screened for antimicrobial, antioxidant and whitening activities. In the antioxidant experiment, supercritical Halopteris scoparia extraction (SHE) and hydrothermal Halopteris scoparia extraction (HHE) were slightly different depending on the experimental method (Total polyphenol content measurement, DPPH radical scavenging ability, ABTS radical scavenging ability, and SOD-like activity) and in the enzyme experiment (Elastase, Tyrosinase inhibition activity), the supercritical extract was more effective. In supercritical fluid, Halopteris scoparia extracts showed good antimicrobial activity against Propionibacterium acnes, Staphylococcus aureus, Bacillus subtilis and Escherichia coli but hydrothermal extract had no effect about the rest of the strains. Therefore, it can be expected that the supercritical Halopteris scoparia extract with excellent antibacterial activity can be used as a cosmetic material.
Antiviral Activity of Chlorophyll Extracts from Tetraselmis sp., a Marine Microalga, Against Zika Virus Infection
Recent advancements in the large-scale cultivation of Tetraselmis sp. in Korea have enabled year-round production of this marine microalgae. This study explores the potential industrial applications of Tetraselmis sp. biomass by investigating the antiviral properties of its extracts and primary components. The antiviral effects of Tetraselmis sp. extracts were evaluated in Zika virus (ZIKV)-infected cells. Following extensive isolation and purification, the main compounds were characterized using liquid chromatography–mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) analyses. Their antiviral activities were confirmed using in vitro and in silico tests. Tetraselmis sp. extracts reduced infectious viral particles and non-structural protein 1 messenger RNA levels in ZIKV-infected cells without inducing cytotoxicity. Additionally, they modulated the interferon-mediated immune system responses. Tetraselmis sp. extracts are composed of four main chlorophylls: chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, hydroxychlorophyll a, and hydroxypheophytin a. Among them, chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, and hydroxypheophytin showed the antiviral activities in ZIKV-infected cells and molecular docking simulations predicted interactions between these chlorophylls and ZIKV. Our findings suggest that Tetraselmis sp. chlorophyll extracts exert antiviral effects against ZIKV and could serve as potential therapeutic candidates against ZIKV infection.
Antioxidant, Antiviral, and Anti-Inflammatory Activities of Lutein-Enriched Extract of Tetraselmis Species
Microalgae are proposed to have powerful applications for human health in the pharmaceutical and food industries. Tetraselmis species (sp.), which are green microalgae, were identified as a source of broad-spectrum health-promoting biological activities. However, the bioactivity of these species has not been elucidated. We aimed to confirm the antioxidant, antiviral, and anti-inflammatory effects of Tetraselmis sp. extract (TEE). TEE showed 2,2-diphenyl-1-picryl-hydrazyl-hydrate radical and hydrogen peroxide scavenging activities and reduced plaque formation in Vero E6 cells infected with vaccinia virus. TEE treatment also significantly inhibited nitric oxide (NO) production and improved cell viability in lipopolysaccharide (LPS)-induced RAW264.7 cells. These anti-inflammatory effects were further analyzed in LPS-induced RAW 264.7 cells and the zebrafish model. Further, TEE reduced induced NO synthase expression and proinflammatory cytokine release, including tumor necrosis factor-α, interleukin-6, and interleukin-1β, through MAPKs and NF-κB-dependent mechanisms. Further analysis revealed that TEE increased the survival rate and reduced cell death and NO production in an LPS-stimulated zebrafish model. Further, high-performance liquid chromatography revealed a strong presence of the carotenoid lutein in TEE. Overall, the results suggest that lutein-enriched TEE may be a potent antioxidant, antiviral, and anti-inflammatory agent that could be sustainably utilized in industrial applications.
Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity
Crosstalk between liver and skeletal muscle is vital for glucose homeostasis. Hepatokines, liver-derived proteins that play an important role in regulating muscle metabolism, are important to this communication. Here we identify apolipoprotein J (ApoJ) as a novel hepatokine targeting muscle glucose metabolism and insulin sensitivity through a low-density lipoprotein receptor-related protein-2 (LRP2)-dependent mechanism, coupled with the insulin receptor (IR) signaling cascade. In muscle, LRP2 is necessary for insulin-dependent IR internalization, an initial trigger for insulin signaling, that is crucial in regulating downstream signaling and glucose uptake. Of physiologic significance, deletion of hepatic ApoJ or muscle LRP2 causes insulin resistance and glucose intolerance. In patients with polycystic ovary syndrome and insulin resistance, pioglitazone-induced improvement of insulin action is associated with an increase in muscle ApoJ and LRP2 expression. Thus, the ApoJ-LRP2 axis is a novel endocrine circuit that is central to the maintenance of normal glucose homeostasis and insulin sensitivity. Hepatokines are proteins secreted by the liver that can regulate whole body metabolism. Here the authors identify apolipoprotein J as a hepatokine that regulates muscle glucose metabolism and insulin resistance through a low-density lipoprotein receptor-related protein−2 mediated mechanism in mice.
Applications of Marine Organism-Derived Polydeoxyribonucleotide: Its Potential in Biomedical Engineering
Polydeoxyribonucleotides (PDRNs) are a family of DNA-derived drugs with a molecular weight ranging from 50 to 1500 kDa, which are mainly extracted from the sperm cells of salmon trout or chum salmon. Many pre-clinical and clinical studies have demonstrated the wound healing and anti-inflammatory properties of PDRN, which are mediated by the activation of adenosine A2A receptor and salvage pathways, in addition to promoting osteoblast activity, collagen synthesis, and angiogenesis. In fact, PDRN is already marketed due to its therapeutic properties against various wound healing- and inflammation-related diseases. Therefore, this review assessed the most recent trends in marine organism-derived PDRN using the Google Scholar search engine. Further, we summarized the current applications and pharmacological properties of PDRN to serve as a reference for the development of novel PDRN-based technologies.