Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
181 result(s) for "Hernández, Oscar R."
Sort by:
Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping
The arginine-vasopressin (AVP)-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs) are known for their role in hydro-electrolytic balance control via their projections to the neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula and other brain regions in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA). The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS), consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptor mRNAs were not detected, using the same method. Water-deprivation (WD) for 24 h, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze (EPM) test, and this effect was mimicked by bilateral microinfusion of AVP into the CeA. Anxious behavior induced by either WD or AVP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of CeA inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.
A Synaptically Connected Hypothalamic Magnocellular Vasopressin-Locus Coeruleus Neuronal Circuit and Its Plasticity in Response to Emotional and Physiological Stress
The locus coeruleus (LC)-norepinephrine (NE) system modulates a range of salient brain functions, including memory and response to stress. The LC-NE system is regulated by neurochemically diverse inputs, including a range of neuropeptides such as arginine-vasopressin (AVP). Whilst the origins of many of these LC inputs, their synaptic connectivity with LC neurons, and their contribution to LC-mediated brain functions, have been well characterized, this is not the case for the AVP-LC system. Therefore, our aims were to define the types of synapses formed by AVP+ fibers with LC neurons using immunohistochemistry together with confocal and transmission electron microscopy (TEM), the origins of such inputs, using retrograde tracers, and the plasticity of the LC AVP system in response to stress and spatial learning, using the maternal separation (MS) and Morris water maze (MWM) paradigms, respectively, in rat. Confocal microscopy revealed that AVP+ fibers contacting tyrosine hydroxylase (TH)+ LC neurons were also immunopositive for vesicular glutamate transporter 2, a marker of presynaptic glutamatergic axons. TEM confirmed that AVP+ axons formed Gray type I (asymmetric) synapses with TH+ dendrites thus confirming excitatory synaptic connections between these systems. Retrograde tracing revealed that these LC AVP+ fibers originate from hypothalamic vasopressinergic magnocellular neurosecretory neurons (AVPMNNs). MS induced a significant increase in the density of LC AVP+ fibers. Finally, AVPMNN circuit upregulation by water-deprivation improved MWM performance while increased Fos expression was found in LC and efferent regions such as hippocampus and prefrontal cortex, suggesting that AVPMMN projections to LC could integrate homeostatic responses modifying neuroplasticity.
Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5′-bromo-2′-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS’s potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.
Recent advances in the use of CRISPR/Cas for understanding the early development of molecular gaps in glial cells
Glial cells are non-neuronal elements of the nervous system (NS) and play a central role in its development, maturation, and homeostasis. Glial cell interest has increased, leading to the discovery of novel study fields. The CRISPR/Cas system has been widely employed for NS understanding. Its use to study glial cells gives crucial information about their mechanisms and role in the central nervous system (CNS) and neurodegenerative disorders. Furthermore, the increasingly accelerated discovery of genes associated with the multiple implications of glial cells could be studied and complemented with the novel screening methods of high-content and single-cell screens at the genome-scale as Perturb-Seq, CRISP-seq, and CROPseq. Besides, the emerging methods, GESTALT, and LINNAEUS, employed to generate large-scale cell lineage maps have yielded invaluable information about processes involved in neurogenesis. These advances offer new therapeutic approaches to finding critical unanswered questions about glial cells and their fundamental role in the nervous system. Furthermore, they help to better understanding the significance of glial cells and their role in developmental biology.
Kisspeptin fiber and receptor distribution analysis suggests its potential role in central sensorial processing and behavioral state control
Kisspeptin (KP) signaling in the brain is defined by the anatomical distribution of KP-producing neurons, their fibers, receptors, and connectivity. Technological advances have prompted a re-evaluation of these chemoanatomical aspects, originally studied in the early years after the discovery of KP and its receptor We have previously characterized(1) seven KP neuronal populations in the mouse brain at the mRNA level, including two novel populations, and examined their short-term response to gonadectomy. In this study, we mapped KP fiber distribution in rats and mice using immunohistochemistry under intact and short- and long-term post-gonadectomy conditions. mRNA expression was examined via RNAscope, in relation to vesicular GABA transporter ( ) in whole mouse brain and to KP and vesicular glutamate transporter 2 ( and ) in hypothalamic RP3V and arcuate regions. We identified KP fibers in 118 brain regions, primarily in extra-hypothalamic areas associated with sensorial processing and behavioral state control. KP-immunoreactive fiber density and distribution were largely unchanged by gonadectomy. was expressed prominently in sensorial and state control regions such as septal nuclei, the suprachiasmatic nucleus, locus coeruleus, hippocampal layers, thalamic nuclei, and cerebellar structures. Co-expression of and was observed in hypothalamic neurons, suggesting both autocrine and paracrine KP signaling mechanisms. These findings enhance our understanding of KP signaling beyond reproductive functions, particularly in sensorial and behavioral state regulation. This study opens new avenues for investigating KP's role in controlling complex physiological processes, including those not related to reproduction.
Comprehensive chemotyping, and the gonadal regulation, of seven kisspeptinergic neuronal populations in the mouse brain
Kisspeptinergic signaling is well-established as crucial for regulation of reproduction, but its potential broader role in brain function is less understood. This study investigates the distribution and chemotyping of kisspeptin-expressing neurons within the mouse brain. RNAscope singleplex, duplex and multiplex in situ hybridization methods were used to assess kisspeptin mRNA (Kiss1) expression and its co-expression with other neuropeptides, excitatory and inhibitory neurotransmitter markers, and sex steroid receptors in intact and gonadectomized young adult mice. Seven distinct kisspeptin neuronal chemotypes were characterized, including within two novel Kiss1-expressing groups described here for the first time: the ventral premammillary nucleus, and the nucleus of the solitary tract. Kiss1 mRNA was also localized in the soma, and within the dendritic compartment, of hypothalamic neurons. Altered Kiss1 expression following gonadectomy suggests a previously unappreciated role for androgen receptors in regulating kisspeptin signaling. This study provides a detailed chemoanatomical map of kisspeptin-expressing neurons in the brain, highlighting their potential functional diversity. The discovery of new kisspeptin-expressing neuronal populations, and gonadectomy-induced changes in Kiss1 expression patterns, provide a basis for further exploration of non-endocrine roles for kisspeptin in brain function.
Microglial synaptic pruning on axon initial segment of dentate granule cells: sexually dimorphic effects on fear response of adult rats subjected to early life stress
Abstract Axon initial segments (AIS) of dentate granule cells (GC) in hippocampus exhibit prominent spines during early development that are associated with microglial contacts. Here, we asked if developmental changes in axon initial segment spines (AISS) could be modified by neonatal maternal separation through stress hormones and microglial activation and examined the potential behavioral consequences. We examined AISS densities at postnatal day (PND) 15 and 50, using Golgi-Cox staining and anatomical analysis. Neuron-microglial interaction was assessed using antibodies against ankyrinG, PSD95 and Iba1, for AIS, AISS and microglia, respectively, in normally reared and neonatal maternally separated (MS) male and female rats. We observed a higher density of AISS in MS groups at both PND15 and PND50 compared to control. Effects were more pronounced in female than in male rats. AIS-associated microglia showed a hyper-ramified morphology and less co-localization with PSD95 in MS compared to normally reared animals at PND 15. An MS-like alteration in microglial morphology and synaptic pruning could be produced ex vivo by vasopressin application in acute hippocampal slices from normally reared animals. MS rats exhibited increased freezing behavior during auditory fear memory testing which, like effects on AISS density, was more pronounced in females than males. Freezing behavior was associated with Fos expression in dorsal and ventral dentate GC. In summary, AIS associated microglial activity is altered by MS. Sex differences in the long-term effects of MS on AISS density are penetrant to a behavioral phenotype of increased stimulus reactivity in adult female subjects. Competing Interest Statement The authors have declared no competing interest.
Nucleus of the lateral olfactory tract (NLOT): a hub linking water homeostasis-associated SON-AVP circuit and neocortical regions to promote social behavior under osmotic challenge
Homeostatic challenges increase the drive for social interaction. The neural activity that prompts this motivation remains poorly understood. Here, we identify direct projections from hypothalamic supraoptic nucleus (SON) to the cortico-amygdalar nucleus of the lateral olfactory tract (NLOT). Dual in situ hybridization (DISH) with probes for PACAP, and VGLUT1, VGLUT2, V1a and V1b revealed a population of vasopressin-receptive PACAPergic neurons in NLOT layer 2 (NLOT2). Water deprivation (48 hours, WD48) increased sociability compared to euhydrated subjects, assessed with the three-chamber social interaction test (3CST). Fos expression immunohistochemistry showed NLOT and its main efferent regions had further increases in rats subjected to WD48+3CST. These regions strongly expressed PAC1 mRNA. Microinjections of AVP into NLOT produced similar changes in sociability to water deprivation, and these were reduced by co-injection of V1a or V1b antagonists along with AVP. We conclude that during challenge to water homeostasis, there is a recruitment of a glutamatergic-multi-peptidergic cooperative circuit that promotes social behavior. Competing Interest Statement The authors have declared no competing interest. Footnotes * Statistics amendments and discussion on limitations of this study.
ACE2 expression in rat brain: implications for COVID-19 associated neurological manifestations
We examined cell type-specific expression and distribution of rat brain angiotensin converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, in rodent brain. ACE2 is ubiquitously present in brain vasculature, with the highest density of ACE2 expressing capillaries found in the olfactory bulb, the hypothalamic paraventricular, supraoptic and mammillary nuclei, the midbrain substantia nigra and ventral tegmental area, and the hindbrain pontine nucleus, pre-Botzinger complex, and nucleus of tractus solitarius. ACE2 was expressed in astrocytes and astrocytic foot processes, pericytes and endothelial cells, key components of the blood-brain-barrier. We found discrete neuronal groups immunopositive for ACE2 in brainstem respiratory rhythm generating centers including the pontine nucleus, the parafascicular/retrotrapezoid nucleus, the parabrachial nucleus, the Botzinger and pre-Botzinger complex and the nucleus of tractus solitarius; in arousal-related pontine reticular nucleus and in gigantocellular reticular nuclei; in brainstem aminergic nuclei, including substantia nigra, ventral tegmental area, dorsal raphe, and locus coeruleus; in the epithalamic habenula, hypothalamic paraventricular and suprammamillary nuclei; and in the hippocampus. Identification of ACE2-expressing neurons in rat brain within well-established functional circuits facilitates prediction of possible neurological manifestations of brain ACE2 dysregulation during and after COVID-19 infection. Competing Interest Statement The authors have declared no competing interest.
Morphological signatures of neurogenesis and neuronal migration in hypothalamic vasopressinergic magnocellular nuclei of the adult rat
Arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker Iba1, and 5′-bromo-2′-deoxyuridine (BrdU), we report morphological evidence that low rate neurogenesis and migration occur in adult AVPMNS in rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the SON and PVN. These findings raise new questions about AVPMNS’s potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.