Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
83 result(s) for "Hernandez, Agusti"
Sort by:
Improvement in Motor and Walking Capacity during Multisegmental Transcutaneous Spinal Stimulation in Individuals with Incomplete Spinal Cord Injury
Transcutaneous multisegmental spinal cord stimulation (tSCS) has shown superior efficacy in modulating spinal locomotor circuits compared to single-site stimulation in individuals with spinal cord injury (SCI). Building on these findings, we hypothesized that administering a single session of tSCS at multiple spinal segments may yield greater enhancements in muscle strength and gait function during stimulation compared to tSCS at only one or two segments. In our study, tSCS was applied at single segments (C5, L1, and Coc1), two segments (C5-L1, C5-Coc1, and L1-Coc1), or multisegments (C5-L1-Coc1) in a randomized order. We evaluated the 6-m walking test (6MWT) and maximum voluntary contraction (MVC) and assessed the Hmax/Mmax ratio during stimulation in ten individuals with incomplete motor SCI. Our findings indicate that multisegmental tSCS improved walking time and reduced spinal cord excitability, as measured by the Hmax/Mmax ratio, similar to some single or two-site tSCS interventions. However, only multisegmental tSCS resulted in increased tibialis anterior (TA) muscle strength. These results suggest that multisegmental tSCS holds promise for enhancing walking capacity, increasing muscle strength, and altering spinal cord excitability in individuals with incomplete SCI.
Large mesopelagic fishes biomass and trophic efficiency in the open ocean
With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate. Here we combine modelling and a sensitivity analysis of the acoustic observations from the Malaspina 2010 Circumnavigation Expedition to show that the previous estimate needs to be revised to at least one order of magnitude higher. We show that there is a close relationship between the open ocean fishes biomass and primary production, and that the energy transfer efficiency from phytoplankton to mesopelagic fishes in the open ocean is higher than what is typically assumed. Our results indicate that the role of mesopelagic fishes in oceanic ecosystems and global ocean biogeochemical cycles needs to be revised as they may be respiring ~10% of the primary production in deep waters. Mesopelagic fishes dominate the global fishes biomass, yet there exist major uncertainties regarding their global biomass. Irigoien et al. analyse acoustic data collected during a circumglobal cruise and show that biomass estimates should be raised by an order of magnitude.
Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia
Background Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. Methods We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. Results Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. Conclusions Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.
Cellular Senescence in Lung Fibrosis
Fibrosing interstitial lung diseases (ILDs) are chronic and ultimately fatal age-related lung diseases characterized by the progressive and irreversible accumulation of scar tissue in the lung parenchyma. Over the past years, significant progress has been made in our incomplete understanding of the pathobiology underlying fibrosing ILDs, in particular in relation to diverse age-related processes and cell perturbations that seem to lead to maladaptation to stress and susceptibility to lung fibrosis. Growing evidence suggests that a specific biological phenomenon known as cellular senescence plays an important role in the initiation and progression of pulmonary fibrosis. Cellular senescence is defined as a cell fate decision caused by the accumulation of unrepairable cellular damage and is characterized by an abundant pro-inflammatory and pro-fibrotic secretome. The senescence response has been widely recognized as a beneficial physiological mechanism during development and in tumour suppression. However, recent evidence strengthens the idea that it also drives degenerative processes such as lung fibrosis, most likely by promoting molecular and cellular changes in chronic fibrosing processes. Here, we review how cellular senescence may contribute to lung fibrosis pathobiology, and we highlight current and emerging therapeutic approaches to treat fibrosing ILDs by targeting cellular senescence.
Exploring the Interplay between Cellular Senescence, Immunity, and Fibrosing Interstitial Lung Diseases: Challenges and Opportunities
Fibrosing interstitial lung diseases (ILDs) are characterized by the gradual and irreversible accumulation of scar tissue in the lung parenchyma. The role of the immune response in the pathogenesis of pulmonary fibrosis remains unclear. In recent years, substantial advancements have been made in our comprehension of the pathobiology driving fibrosing ILDs, particularly concerning various age-related cellular disturbances and immune mechanisms believed to contribute to an inadequate response to stress and increased susceptibility to lung fibrosis. Emerging studies emphasize cellular senescence as a key mechanism implicated in the pathobiology of age-related diseases, including pulmonary fibrosis. Cellular senescence, marked by antagonistic pleiotropy, and the complex interplay with immunity, are pivotal in comprehending many aspects of lung fibrosis. Here, we review progress in novel concepts in cellular senescence, its association with the dysregulation of the immune response, and the evidence underlining its detrimental role in fibrosing ILDs.
Lung-function trajectories: relevance and implementation in clinical practice
Lung development starts in utero and continues during childhood through to adolescence, reaching its peak in early adulthood. This growth is followed by gradual decline due to physiological lung ageing. Lung-function development can be altered by several host and environmental factors during the life course. As a result, a range of lung-function trajectories exist in the population. Below average trajectories are associated with respiratory, cardiovascular, metabolic, and mental health comorbidities, as well as with premature death. This Review presents progressive research into lung-function trajectories and assists the implementation of this knowledge in clinical practice as an innovative approach to detect poor lung health early, monitor respiratory disease progression, and promote lung health. Specifically, we propose that, similar to paediatric height and weight charts used globally to monitor children's growth, lung-function charts could be used for both children and adults to monitor lung health status across the life course. To achieve this proposal, we introduce our free online Lung Function Tracker tool. Finally, we discuss challenges and opportunities for effective implementation of the trajectory concept at population level and outline an agenda for crucial research needed to support such implementation.
Large deep-sea zooplankton biomass mirrors primary production in the global ocean
The biological pump transports organic carbon produced by photosynthesis to the meso- and bathypelagic zones, the latter removing carbon from exchanging with the atmosphere over centennial time scales. Organisms living in both zones are supported by a passive flux of particles, and carbon transported to the deep-sea through vertical zooplankton migrations. Here we report globally-coherent positive relationships between zooplankton biomass in the epi-, meso-, and bathypelagic layers and average net primary production (NPP). We do so based on a global assessment of available deep-sea zooplankton biomass data and large-scale estimates of average NPP. The relationships obtained imply that increased NPP leads to enhanced transference of organic carbon to the deep ocean. Estimated remineralization from respiration rates by deep-sea zooplankton requires a minimum supply of 0.44 Pg C y(-1) transported into the bathypelagic ocean, comparable to the passive carbon sequestration. We suggest that the global coupling between NPP and bathypelagic zooplankton biomass must be also supported by an active transport mechanism associated to vertical zooplankton migration.
Iron accumulation drives fibrosis, senescence and the senescence-associated secretory phenotype
Fibrogenesis is part of a normal protective response to tissue injury that can become irreversible and progressive, leading to fatal diseases. Senescent cells are a main driver of fibrotic diseases through their secretome, known as senescence-associated secretory phenotype (SASP). Here, we report that cellular senescence, and multiple types of fibrotic diseases in mice and humans are characterized by the accumulation of iron. We show that vascular and hemolytic injuries are efficient in triggering iron accumulation, which in turn can cause senescence and promote fibrosis. Notably, we find that senescent cells persistently accumulate iron, even when the surge of extracellular iron has subdued. Indeed, under normal conditions of extracellular iron, cells exposed to different types of senescence-inducing insults accumulate abundant ferritin-bound iron, mostly within lysosomes, and present high levels of labile iron, which fuels the generation of reactive oxygen species and the SASP. Finally, we demonstrate that detection of iron by magnetic resonance imaging might allow non-invasive assessment of fibrotic burden in the kidneys of mice and in patients with renal fibrosis. Our findings suggest that iron accumulation plays a central role in senescence and fibrosis, even when the initiating events may be independent of iron, and identify iron metabolism as a potential therapeutic target for senescence-associated diseases. Iron is shown to have a central role in senescence, both by triggering senescence and through its accumulation in senescent cells, which is driving the senescence-associated secretory phenotype and, in turn, promotes fibrogenesis.
p38 MAP kinase is a therapeutic target for hepatic encephalopathy in rats with portacaval shunts
ObjectiveInflammation plays a role in neurological alterations in patients with hepatic encephalopathy (HE). Animal models of HE show neuroinflammation. Treatment with ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), reduces neuroinflammation and restores cognitive and motor function in rats with HE due to portacaval shunts (PCS). This suggests that reducing neuroinflammation would improve neurological status in patients with minimal or clinical HE. NSAID induce kidney damage in patients with cirrhosis and PCS rats and are not suitable for clinical use. It is therefore necessary to look for procedures to eliminate neuroinflammation without inducing secondary effects in the kidney. Inhibition of p38 MAPK is being tested as a therapeutic target in inflammatory diseases and reduces microglial activation. This study aimed to assess whether inhibiting p38 with SB239063 reduces neuroinflammation and improves cognitive and motor function in PCS rats without affecting the kidney.Resultsp38 activity is increased in the brains of PCS rats and treatment with SB239063 reduces microglial activation, as well as inflammatory markers in brain (prostaglandin E2, cyclooxygenase activity, iNOS, IL-1β, TNFα) and blood (prostaglandin E2 and TNFα). PCS rats showed increased ammonia and glutamine in the brain, which was not affected by SB239063. PCS rats showed reduced ability to learn a Y-maze conditional discrimination task, reduced motor activity and impaired motor coordination, as assessed in the rotarod. Treatment with SB239063 completely restored learning ability, motor activity and coordination in PCS rats. SB239063 did not affect creatinine or sodium levels in serum, indicating that it does not induce kidney damage.ConclusionThese findings suggest that reducing neuroinflammation by using inhibitors of p38 would improve the neurological status in HE without inducing secondary effects in the kidney.
Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment
• Background and Aims Polyploidy is a major component of plant evolution. The citrus gene pool is essentially diploid but tetraploid plants are frequently encountered in seedlings of diploid apomictic genotypes. The main objectives of the present study were to establish the origin of these tetraploid plants and to ascertain the importance of genotypic and environmental factors on tetraploid formation. • Methods Tetraploid seedlings from 30 diploid apomictic genotypes were selected by flow cytometry and genotyped with 24 single sequence repeat (SSR) markers to analyse their genetic origin. Embryo rescue was used to grow all embryos contained in polyembryonic seeds of 'Tardivo di Ciaculli' mandarin, followed by characterization of the plantlets obtained by flow cytometry and SSR markers to accurately establish the rate of tetraploidization events and their potential tissue location. Inter-annual variations in tetraploid seedling rates were analysed for seven genotypes. Variation in tetraploid plantlet rates was analysed between different seedlings of the same genotype ('Carrizo' citrange; Citrus sinensis × Poncirus trifoliata) from seeds collected in different tropical, subtropical and Mediterranean countries. • Key Results Tetraploid plants were obtained for all the studied diploid genotypes, except for four mandarins. All tetraploid plants were identical to their diploid maternal line for SSR markers and were not cytochimeric. Significant genotypic and environmental effects were observed, as well as negative correlation between mean temperature during the flowering period and tetraploidy seedling rates. The higher frequencies (20 %) of tetraploids were observed for citranges cultivated in the Mediterranean area. • Conclusions Tetraploidization by chromosome doubling of nucellar cells are frequent events in apomictic citrus, and are affected by both genotypic and environmental factors. Colder conditions in marginal climatic areas appear to favour the expression of tetraploidization. Tetraploid genotypes arising from chromosome doubling of apomictic citrus are extensively being used as parents in breeding programmes to develop seedless triploid cultivars and have potential direct use as new rootstocks.