Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
83
result(s) for
"Hernandez, Dena G"
Sort by:
Menopause accelerates biological aging
by
Bandinelli, Stefania
,
Manson, JoAnn E.
,
Teschendorff, Andrew E.
in
Adult
,
Aging
,
Aging - physiology
2016
Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women’s Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson’s disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further.
Journal Article
Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain
by
Zielke, H. Ronald
,
Longo, Dan L.
,
Troncoso, Juan
in
Brain - metabolism
,
Brain research
,
Colleges & universities
2010
A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We present a set of integrated experiments that investigate the effects of common genetic variability on DNA methylation and mRNA expression in four human brain regions each from 150 individuals (600 samples total). We find an abundance of genetic cis regulation of mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation across the genome. We show peak enrichment for cis expression QTLs to be approximately 68,000 bp away from individual transcription start sites; however, the peak enrichment for cis CpG methylation QTLs is located much closer, only 45 bp from the CpG site in question. We observe that the largest magnitude quantitative trait loci occur across distinct brain tissues. Our analyses reveal that CpG methylation quantitative trait loci are more likely to occur for CpG sites outside of islands. Lastly, we show that while we can observe individual QTLs that appear to affect both the level of a transcript and a physically close CpG methylation site, these are quite rare. We believe these data, which we have made publicly available, will provide a critical step toward understanding the biological effects of genetic variation.
Journal Article
Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study
2010
The genetic cause of amyotrophic lateral sclerosis (ALS) is not well understood. Finland is a well suited location for a genome-wide association study of ALS because the incidence of the disease is one of the highest in the world, and because the genetic homogeneity of the Finnish population enhances the ability to detect risk loci. We aimed to identify genetic risk factors for ALS in the Finnish population.
We did a genome-wide association study of Finnish patients with ALS and control individuals by use of Illumina genome-wide genotyping arrays. DNA was collected from patients who attended an ALS specialty clinic that receives referrals from neurologists throughout Finland. Control samples were from a population-based study of elderly Finnish individuals. Patients known to carry D90A alleles of the
SOD1 gene (n=40) were included in the final analysis as positive controls to assess whether our genome-wide association study was able to detect an association signal at this locus.
We obtained samples from 442 patients with ALS and 521 control individuals. After quality control filters were applied, 318 167 single nucleotide polymorphisms (SNPs) from 405 people with ALS and 497 control individuals were available for analysis. We identified two association peaks that exceeded genome-wide significance. One was located on chromosome 21q22 (rs13048019, p=2·58×10
−8), which corresponds to the autosomal recessive D90A allele of the
SOD1 gene. The other was detected in a 232 kb block of linkage disequilibrium (rs3849942, p=9·11×10
−11) in a region of chromosome 9p that was previously identified in linkage studies of families with ALS. Within this region, we defined a 42-SNP haplotype that was associated with significantly increased risk of ALS (p=7·47×10
−33 when people with familial ALS were compared with controls, odds ratio 21·0, 95% CI 11·2–39·1) and which overlapped with an association locus recently reported for frontotemporal dementia. For the 93 patients with familial ALS, the population attributable risk for the chromosome 9p21 locus was 37·9% (95% CI 27·7–48·1) and that for D90A homozygosity was 25·5% (16·9–34·1).
The chromosome 9p21 locus is a major cause of familial ALS in the Finnish population. Our data suggest the presence of a founder mutation for chromosome 9p21-linked ALS. Furthermore, the overlap with the risk haplotype recently reported for frontotemporal dementia provides further evidence of a shared genetic cause for these two neurodegenerative diseases.
National Institutes of Health and National Institute on Aging, Microsoft Research, ALS Association, Helsinki University Central Hospital, Finnish Academy, Finnish Medical Society Duodecim, and Kuopio University.
Journal Article
QTL mapping of human retina DNA methylation identifies 87 gene-epigenome interactions in age-related macular degeneration
2024
DNA methylation provides a crucial epigenetic mark linking genetic variations to environmental influence. We have analyzed array-based DNA methylation profiles of 160 human retinas with co-measured RNA-seq and >8 million genetic variants, uncovering sites of genetic regulation in
cis
(37,453 methylation quantitative trait loci and 12,505 expression quantitative trait loci) and 13,747 DNA methylation loci affecting gene expression, with over one-third specific to the retina. Methylation and expression quantitative trait loci show non-random distribution and enrichment of biological processes related to synapse, mitochondria, and catabolism. Summary data-based Mendelian randomization and colocalization analyses identify 87 target genes where methylation and gene-expression changes likely mediate the genotype effect on age-related macular degeneration. Integrated pathway analysis reveals epigenetic regulation of immune response and metabolism including the glutathione pathway and glycolysis. Our study thus defines key roles of genetic variations driving methylation changes, prioritizes epigenetic control of gene expression, and suggests frameworks for regulation of macular degeneration pathology by genotype–environment interaction in retina.
Here, the authors perform genome-wide mapping of DNA methylation and expression quantitative trait loci, revealing associations among genotype, epigenome and transcriptome, uncovering genes and gene-environment interactions contributing to age-related macular degeneration (AMD).
Journal Article
Novel age-associated DNA methylation changes and epigenetic age acceleration in middle-aged African Americans and whites
by
Evans, Michele K.
,
Noren Hooten, Nicole
,
Tajuddin, Salman M.
in
African Americans
,
Aging and Development Epigenetics
,
B cells
2019
Background
African Americans (AAs) experience premature chronic health outcomes and longevity disparities consistent with an accelerated aging phenotype. DNA methylation (DNAm) levels at specific CpG positions are hallmarks of aging evidenced by the presence of age-associated differentially methylated CpG positions (aDMPs) that are the basis for the epigenetic clock for measuring biological age acceleration. Since DNAm has not been widely studied among non-European populations, we examined the association between DNAm and chronological age in AAs and whites, and the association between race, poverty, sex, and epigenetic age acceleration.
Results
We measured genome-wide DNA methylation (866,836 CpGs) using the Illumina MethylationEPIC BeadChip in blood DNA extracted from 487 middle-aged AA (
N
= 244) and white (
N
= 243), men (
N
= 248), and women (
N
= 239). The mean (sd) age was 48.4 (8.8) in AA and 49.0 (8.7) in whites (
p
= 0.48). We identified 4930 significantly associated aDMPs in AAs and 469 in whites. Of these, 75.6% and 53.1% were novel, largely driven by the increased number of measured CpGs in the EPIC array, in AA and whites, respectively. AAs had more age-associated DNAm changes than whites in genes implicated in age-related diseases and cellular pathways involved in growth and development. We assessed three epigenetic age acceleration measures (universal, intrinsic, and extrinsic). AAs had a significantly slower extrinsic aging compared to whites. Furthermore, compared to AA women, both AA and white men had faster aging in the universal age acceleration measure (+ 2.04 and + 1.24 years, respectively,
p
< 0.05).
Conclusions
AAs have more wide-spread methylation changes than whites. Race and sex interact to underlie biological age acceleration suggesting altered DNA methylation patterns may be important in age-associated health disparities.
Journal Article
Imputation of Variants from the 1000 Genomes Project Modestly Improves Known Associations and Can Identify Low-frequency Variant - Phenotype Associations Undetected by HapMap Based Imputation
2013
Genome-wide association (GWA) studies have been limited by the reliance on common variants present on microarrays or imputable from the HapMap Project data. More recently, the completion of the 1000 Genomes Project has provided variant and haplotype information for several million variants derived from sequencing over 1,000 individuals. To help understand the extent to which more variants (including low frequency (1% ≤ MAF <5%) and rare variants (<1%)) can enhance previously identified associations and identify novel loci, we selected 93 quantitative circulating factors where data was available from the InCHIANTI population study. These phenotypes included cytokines, binding proteins, hormones, vitamins and ions. We selected these phenotypes because many have known strong genetic associations and are potentially important to help understand disease processes. We performed a genome-wide scan for these 93 phenotypes in InCHIANTI. We identified 21 signals and 33 signals that reached P<5×10(-8) based on HapMap and 1000 Genomes imputation, respectively, and 9 and 11 that reached a stricter, likely conservative, threshold of P<5×10(-11) respectively. Imputation of 1000 Genomes genotype data modestly improved the strength of known associations. Of 20 associations detected at P<5×10(-8) in both analyses (17 of which represent well replicated signals in the NHGRI catalogue), six were captured by the same index SNP, five were nominally more strongly associated in 1000 Genomes imputed data and one was nominally more strongly associated in HapMap imputed data. We also detected an association between a low frequency variant and phenotype that was previously missed by HapMap based imputation approaches. An association between rs112635299 and alpha-1 globulin near the SERPINA gene represented the known association between rs28929474 (MAF = 0.007) and alpha1-antitrypsin that predisposes to emphysema (P = 2.5×10(-12)). Our data provide important proof of principle that 1000 Genomes imputation will detect novel, low frequency-large effect associations.
Journal Article
Genome-wide association study confirms extant PD risk loci among the Dutch
by
Hernandez, Dena G
,
Heutink, Peter
,
Post, Bart
in
631/208/205/2138
,
631/208/457/649
,
692/699/375/365/1718
2011
In view of the population-specific heterogeneity in reported genetic risk factors for Parkinson's disease (PD), we conducted a genome-wide association study (GWAS) in a large sample of PD cases and controls from the Netherlands. After quality control (QC), a total of 514 799 SNPs genotyped in 772 PD cases and 2024 controls were included in our analyses. Direct replication of SNPs within
SNCA
and
BST1
confirmed these two genes to be associated with PD in the Netherlands (
SNCA
, rs2736990:
P
=1.63 × 10
−5
, OR=1.325 and
BST1
, rs12502586:
P
=1.63 × 10
−3
, OR=1.337). Within
SNCA
, two independent signals in two different linkage disequilibrium (LD) blocks in the 3′ and 5′ ends of the gene were detected. Besides,
post-hoc
analysis confirmed
GAK/DGKQ
,
HLA
and
MAPT
as PD risk loci among the Dutch (
GAK/DGKQ
, rs2242235:
P
=1.22 × 10
−4
, OR=1.51;
HLA,
rs4248166:
P
=4.39 × 10
−5
, OR=1.36; and
MAPT
, rs3785880:
P
=1.9 × 10
−3
, OR=1.19).
Journal Article
Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data
2007
The cause of sporadic ALS is currently unknown. Despite evidence for a role for genetics, no common genetic variants have been unequivocally linked to sporadic ALS. We sought to identify genetic variants associated with an increased or decreased risk for developing ALS in a cohort of American sporadic cases.
We undertook a genome-wide association study using publicly available samples from 276 patients with sporadic ALS and 271 neurologically normal controls. 555 352 unique SNPs were assayed in each sample using the Illumina Infinium II HumanHap550 SNP chip.
More than 300 million genotypes were produced in 547 participants. These raw genotype data are freely available on the internet and represent the first publicly accessible SNP data for ALS cases. 34 SNPs with a p value less than 0·0001 (two degrees of freedom) were found, although none of these reached significance after Bonferroni correction.
We generated publicly available genotype data for sporadic ALS patients and controls. No single locus was definitively associated with increased risk of developing disease, although potentially associated candidate SNPs were identified.
Journal Article
Identification of Nine Novel Loci Associated with White Blood Cell Subtypes in a Japanese Population
by
Longo, Dan L.
,
Couper, David J.
,
Ohmiya, Hiroko
in
Asian Continental Ancestry Group - genetics
,
Biology
,
Blood
2011
White blood cells (WBCs) mediate immune systems and consist of various subtypes with distinct roles. Elucidation of the mechanism that regulates the counts of the WBC subtypes would provide useful insights into both the etiology of the immune system and disease pathogenesis. In this study, we report results of genome-wide association studies (GWAS) and a replication study for the counts of the 5 main WBC subtypes (neutrophils, lymphocytes, monocytes, basophils, and eosinophils) using 14,792 Japanese subjects enrolled in the BioBank Japan Project. We identified 12 significantly associated loci that satisfied the genome-wide significance threshold of P<5.0×10(-8), of which 9 loci were novel (the CDK6 locus for the neutrophil count; the ITGA4, MLZE, STXBP6 loci, and the MHC region for the monocyte count; the SLC45A3-NUCKS1, GATA2, NAALAD2, ERG loci for the basophil count). We further evaluated associations in the identified loci using 15,600 subjects from Caucasian populations. These WBC subtype-related loci demonstrated a variety of patterns of pleiotropic associations within the WBC subtypes, or with total WBC count, platelet count, or red blood cell-related traits (n = 30,454), which suggests unique and common functional roles of these loci in the processes of hematopoiesis. This study should contribute to the understanding of the genetic backgrounds of the WBC subtypes and hematological traits.
Journal Article
Genome Wide Assessment of Young Onset Parkinson’s Disease from Finland
2012
In the current study we undertook a series of experiments to test the hypothesis that a monogenic cause of disease may be detectable within a cohort of Finnish young onset Parkinson's disease patients. In the first instance we performed standard genome wide association analyses, and subsequent risk profile analysis. In addition we performed a series of analyses that involved testing measures of global relatedness within the cases compared to controls, searching for excess homozygosity in the cases, and examining the cases for signs of excess local genomic relatedness using a sliding window approach. This work suggested that the previously identified common, low risk alleles, and the risk models associated with these alleles, were generalizable to the Finnish Parkinson's disease population. However, we found no evidence that would suggest a single common high penetrance mutation exists in this cohort of young onset patients.
Journal Article