Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
85 result(s) for "Hernando Morata, J. A."
Sort by:
Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches
A bstract The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0 νββ ) decay of 136 Xe using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0 νββ decay better than 10 27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.
Sensitivity of NEXT-100 to neutrinoless double beta decay
A bstract NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0 νββ ) decay of 136 Xe. The detector possesses two features of great value for 0 νββ searches: energy resolution better than 1% FWHM at the Q value of 136 Xe and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 × 10 −4 counts keV −1 kg −1 yr −1 . Accordingly, the detector will reach a sensitivity to the 0 νββ -decay half-life of 2.8 × 10 25 years (90% CL) for an exposure of 100 kg·year, or 6.0 × 10 25 years after a run of 3 effective years.
Neutral Bremsstrahlung Emission in Xenon Unveiled
We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White time projection chamber (TPC) and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that is postulated to exist in xenon that has been largely overlooked. For photon emission below 1000 nm, the NBrS yield increases from about10−2photon/e−cm−1bar−1at pressure-reduced electric field values of50Vcm−1bar−1to above3×10−1photon/e−cm−1bar−1at500Vcm−1bar−1. Above1.5kVcm−1bar−1, values that are typically employed for electroluminescence, it is estimated that NBrS is present with an intensity around1photon/e−cm−1bar−1, which is about 2 orders of magnitude lower than conventional, excimer-based electroluminescence. Despite being fainter than its excimeric counterpart, our calculations reveal that NBrS causes luminous backgrounds that can interfere, in either gas or liquid phase, with the ability to distinguish and/or to precisely measure low primary-scintillation signals (S1). In particular, we show this to be the case in the “buffer” region, where keeping the electric field below the electroluminescence threshold does not suffice to extinguish secondary scintillation. The electric field leakage in this region should be mitigated to avoid intolerable levels of NBrS emission. Furthermore, we show that this new source of light emission opens up a viable path toward obtaining S2 signals for discrimination purposes in future single-phase liquid TPCs for neutrino and dark matter physics, with estimated yields up to20–50photons/e−cm−1.
Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment
A bstract Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in 136 Xe. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a 228 Th calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses.
First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment
A bstract The NEXT experiment aims to observe the neutrinoless double beta decay of 136 Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Q ββ . This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of 22 Na 1275 keV gammas and electronpositron pairs produced by conversions of gammas from the 228 Th decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24 . 3 ± 1 . 4 (stat.)%, while maintaining an efficiency of 66 . 7 ± 1 . % for signal events.
Reconstructing neutrinoless double beta decay event kinematics in a xenon gas detector with vertex tagging
If neutrinoless double beta decay is discovered, the next natural step would be understanding the lepton number violating physics responsible for it. Several alternatives exist beyond the exchange of light neutrinos. Some of these mechanisms can be distinguished by measuring phase-space observables, namely the opening angle cos θ among the two decay electrons, and the electron energy spectra, T1 and T2. In this work, we study the statistical accuracy and precision in measuring these kinematic observables in a future xenon gas detector with the added capability to precisely locate the decay vertex. For realistic detector conditions (a gas pressure of 10 bar and spatial resolution of 4 mm), we find that the average $\\overline{cos θ}$ and $\\overline{T_1}$ values can be reconstructed with a precision of 0.19 and 110 keV, respectively, assuming that only 10 neutrinoless double beta decay events are detected.
Measurement of energy resolution with the NEXT-White silicon photomultipliers
A bstract The NEXT-White detector, a high-pressure gaseous xenon time projection chamber, demonstrated the excellence of this technology for future neutrinoless double beta decay searches using photomultiplier tubes (PMTs) to measure energy and silicon photomultipliers (SiPMs) to extract topology information. This analysis uses 83 m Kr data from the NEXT-White detector to measure and understand the energy resolution that can be obtained with the SiPMs, rather than with PMTs. The energy resolution obtained of (10.9 ± 0.6)%, full-width half-maximum, is slightly larger than predicted based on the photon statistics resulting from very low light detection coverage of the SiPM plane in the NEXT-White detector. The difference in the predicted and measured resolution is attributed to poor corrections, which are expected to be improved with larger statistics. Furthermore, the noise of the SiPMs is shown to not be a dominant factor in the energy resolution and may be negligible when noise subtraction is applied appropriately, for high-energy events or larger SiPM coverage detectors. These results, which are extrapolated to estimate the response of large coverage SiPM planes, are promising for the development of future, SiPM-only, readout planes that can offer imaging and achieve similar energy resolution to that previously demonstrated with PMTs.
Fluorescence imaging of individual ions and molecules in pressurized noble gases for barium tagging in 136Xe
The imaging of individual Ba 2+ ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba 2+ ion imaging inside a high-pressure xenon gas environment. Ba 2+ ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm 2 located inside 10 bar of xenon gas. This form of microscopy represents key ingredient in the development of barium tagging for neutrinoless double beta decay searches in 136 Xe. This also provides a new tool for studying the photophysics of fluorescent molecules and chemosensors at the solid-gas interface to enable bottom-up design of catalysts and sensors. Barium tagging is a key ingredient for future detectors of neutrinoless double beta decay in low-background environments. Here, the authors demonstrate fluorescence imaging of single Ba2+ ions in high pressure Xenon gas, by comparing activity between Ba2+ chelated and unchelated samples of crown-ether chemosensors.
Performance of an optical TPC Geant4 simulation with opticks GPU-accelerated photon propagation
We investigate the performance of Opticks , a NVIDIA OptiX API 7.5 GPU-accelerated photon propagation tool compared with a single-threaded Geant4 simulation. We compare the simulations using an improved model of the NEXT-CRAB-0 gaseous time projection chamber. Performance results suggest that Opticks improves simulation speeds by between 58.47 ± 0.02 and 181.39 ± 0.28 times relative to a CPU-only Geant4 simulation and these results vary between different types of GPU and CPU. A detailed comparison shows that the number of detected photons, along with their times and wavelengths, are in good agreement between Opticks and Geant4 .
Fluorescence imaging of individual ions and molecules in pressurized noble gases for barium tagging in 136Xe
The imaging of individual Ba2+ ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba2+ ion imaging inside a high-pressure xenon gas environment. Ba2+ ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm2 located inside 10 bar of xenon gas. This form of microscopy represents key ingredient in the development of barium tagging for neutrinoless double beta decay searches in 136Xe. This also provides a new tool for studying the photophysics of fluorescent molecules and chemosensors at the solid-gas interface to enable bottom-up design of catalysts and sensors.