Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Herriges, Michael J"
Sort by:
The in vivo genetic program of murine primordial lung epithelial progenitors
Multipotent Nkx2-1-positive lung epithelial primordial progenitors of the foregut endoderm are thought to be the developmental precursors to all adult lung epithelial lineages. However, little is known about the global transcriptomic programs or gene networks that regulate these gateway progenitors in vivo. Here we use bulk RNA-sequencing to describe the unique genetic program of in vivo murine lung primordial progenitors and computationally identify signaling pathways, such as Wnt and Tgf-β superfamily pathways, that are involved in their cell-fate determination from pre-specified embryonic foregut. We integrate this information in computational models to generate in vitro engineered lung primordial progenitors from mouse pluripotent stem cells, improving the fidelity of the resulting cells through unbiased, easy-to-interpret similarity scores and modulation of cell culture conditions, including substratum elastic modulus and extracellular matrix composition. The methodology proposed here can have wide applicability to the in vitro derivation of bona fide tissue progenitors of all germ layers. The identity of the earliest murine in vivo lung epithelial progenitors (marked by NKX2-1 expression) is unclear. Here, the authors use single-cell RNA sequencing to define the genetic program of these lung primordial progenitors, which will improve in vitro lung specification of pluripotent stem cells.
Tbx5 drives Aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network coordinating cardiopulmonary development
The gene regulatory networks that coordinate the development of the cardiac and pulmonary systems are essential for terrestrial life but poorly understood. The T-box transcription factor Tbx5 is critical for both pulmonary specification and heart development, but how these activities are mechanistically integrated remains unclear. Here using Xenopus and mouse embryos, we establish molecular links between Tbx5 and retinoic acid (RA) signaling in the mesoderm and between RA signaling and sonic hedgehog expression in the endoderm to unveil a conserved RA-Hedgehog-Wnt signaling cascade coordinating cardiopulmonary (CP) development. We demonstrate that Tbx5 directly maintains expression of aldh1a2, the RA-synthesizing enzyme, in the foregut lateral plate mesoderm via an evolutionarily conserved intronic enhancer. Tbx5 promotes posterior second heart field identity in a positive feedback loop with RA, antagonizing a Fgf8-Cyp regulatory module to restrict FGF activity to the anterior. We find that Tbx5/Aldh1a2-dependent RA signaling directly activates shh transcription in the adjacent foregut endoderm through a conserved MACS1 enhancer. Hedgehog signaling coordinates with Tbx5 in the mesoderm to activate expression of wnt2/2b, which induces pulmonary fate in the foregut endoderm. These results provide mechanistic insight into the interrelationship between heart and lung development informing CP evolution and birth defects.
CoSpar identifies early cell fate biases from single-cell transcriptomic and lineage information
A goal of single-cell genome-wide profiling is to reconstruct dynamic transitions during cell differentiation, disease onset and drug response. Single-cell assays have recently been integrated with lineage tracing, a set of methods that identify cells of common ancestry to establish bona fide dynamic relationships between cell states. These integrated methods have revealed unappreciated cell dynamics, but their analysis faces recurrent challenges arising from noisy, dispersed lineage data. In this study, we developed coherent, sparse optimization (CoSpar) as a robust computational approach to infer cell dynamics from single-cell transcriptomics integrated with lineage tracing. Built on assumptions of coherence and sparsity of transition maps, CoSpar is robust to severe downsampling and dispersion of lineage data, which enables simpler experimental designs and requires less calibration. In datasets representing hematopoiesis, reprogramming and directed differentiation, CoSpar identifies early fate biases not previously detected, predicting transcription factors and receptors implicated in fate choice. Documentation and detailed examples for common experimental designs are available at https://cospar.readthedocs.io/ . A computational algorithm integrates lineage tracing with single-cell RNA sequencing and improves early cell fate prediction.
Both Rare and De Novo Copy Number Variants Are Prevalent in Agenesis of the Corpus Callosum but Not in Cerebellar Hypoplasia or Polymicrogyria
Agenesis of the corpus callosum (ACC), cerebellar hypoplasia (CBLH), and polymicrogyria (PMG) are severe congenital brain malformations with largely undiscovered causes. We conducted a large-scale chromosomal copy number variation (CNV) discovery effort in 255 ACC, 220 CBLH, and 147 PMG patients, and 2,349 controls. Compared to controls, significantly more ACC, but unexpectedly not CBLH or PMG patients, had rare genic CNVs over one megabase (p = 1.48×10⁻³; odds ratio [OR] = 3.19; 95% confidence interval [CI] = 1.89-5.39). Rare genic CNVs were those that impacted at least one gene in less than 1% of the combined population of patients and controls. Compared to controls, significantly more ACC but not CBLH or PMG patients had rare CNVs impacting over 20 genes (p = 0.01; OR = 2.95; 95% CI = 1.69-5.18). Independent qPCR confirmation showed that 9.4% of ACC patients had de novo CNVs. These, in comparison to inherited CNVs, preferentially overlapped de novo CNVs previously observed in patients with autism spectrum disorders (p = 3.06×10⁻⁴; OR = 7.55; 95% CI = 2.40-23.72). Interestingly, numerous reports have shown a reduced corpus callosum area in autistic patients, and diminished social and executive function in many ACC patients. We also confirmed and refined previously known CNVs, including significantly narrowing the 8p23.1-p11.1 duplication present in 2% of our current ACC cohort. We found six novel CNVs, each in a single patient, that are likely deleterious: deletions of 1p31.3-p31.1, 1q31.2-q31.3, 5q23.1, and 15q11.2-q13.1; and duplications of 2q11.2-q13 and 11p14.3-p14.2. One ACC patient with microcephaly had a paternally inherited deletion of 16p13.11 that included NDE1. Exome sequencing identified a recessive maternally inherited nonsense mutation in the non-deleted allele of NDE1, revealing the complexity of ACC genetics. This is the first systematic study of CNVs in congenital brain malformations, and shows a much higher prevalence of large gene-rich CNVs in ACC than in CBLH and PMG.
The association of sexual orientation with prostate, breast, and cervical cancer screening and diagnosis
PurposeData on heterogeneity in cancer screening and diagnosis rates among lesbians/gays and bisexuals (LGBs) is lacking. Recent studies showed that LGBs have decreased healthcare utilization compared to heterosexual counterparts. Few studies have examined how sexual orientation impacts cancer screening and prevalence. We, therefore, investigated the association between sexual orientation and prevalent sex-specific cancer including prostate (PCa), breast (BC), and cervical (CC) cancer.MethodsThis was a cross-sectional survey-based US study, including men and women aged 18 + from the Health Information National Trends Survey (HINTS) database between 2017 and 2019. The primary endpoint was individual-reported prostate, breast, and cervical cancer screening and prevalence rates among heterosexual and LGB men and women. Multivariable logistic regression analyses assessed association of various covariates with undergoing screening and diagnosis of these cancers.ResultsOverall, 4,441 and 6,333 heterosexual men and women, respectively, were compared to 225 and 213 LGB men and women, respectively. LGBs were younger and less likely to be screened for PCa, BC, and CC than heterosexuals. A higher proportion of heterosexual women than lesbian and bisexual women were screened for CC with pap smears (95.36% vs. 90.48% and 86.11%, p ≤ 0.001) and BC with mammograms (80.74% vs. 63.81% and 45.37%, p ≤ 0.001). Similarly, a higher proportion of heterosexual men than gay and bisexual men were screened for PCa with PSA blood tests (41.27% vs. 30.53% and 27.58%, p ≤ 0.001).ConclusionThere were more heterosexuals than LGBs screened for CC, BC, and PCa. However, no association between sexual orientation and cancer diagnosis was found. Healthcare professionals should be encouraged to improve cancer screening among LGBs.
Targeted pre-conditioning and cell transplantation in the murine lower respiratory tract
Transplantation of airway basal stem cells could achieve a durable cure for genetic diseases of the airway, such as cystic fibrosis and primary ciliary dyskinesia. Recent work demonstrated the potential of primary- and pluripotent stem cell (PSC)-derived basal cells to efficiently engrai into the mouse trachea aier injury. However, there are many hurdles to overcome in translating these approaches to humans including developing safe and efficient methods for delivery in larger animal models. We propose a model which targets preconditioning and cell-delivery to the intrapulmonary airways utilizing a micro- bronchoscope for delivery. The detergent polidocanol was adapted for distal lung pre-conditioning, inducing intrapulmonary airway epithelial denudation by 5 and 24-hours post-delivery. While initial re- epithelialization of airways occurred later than tracheas, complete repair was observed within 7-days. Both PSC-derived and primary basal cells delivered via micro-bronchoscope post-polidocanol injury engraied in tracheas and intrapulmonary airways, respectively. Transplanted cells differentiated into ciliated and secretory lineages while maintaining a population of basal cells. These findings demonstrate the utility of bronchoscopically targeted pre-conditioning and cell delivery to the conducting intra- pulmonary airways, providing an important framework for pre-clinical translation of approaches for engineered airway epithelial regeneration.
Both Rare and De Novo Copy Number Variants Are Prevalent in Agenesis of the Corpus Callosum but Not in Cerebellar Hypoplasia or Polymicrogyria
Agenesis of the corpus callosum (ACC), cerebellar hypoplasia (CBLH), and polymicrogyria (PMG) are severe congenital brain malformations with largely undiscovered causes. We conducted a large-scale chromosomal copy number variation (CNV) discovery effort in 255 ACC, 220 CBLH, and 147 PMG patients, and 2,349 controls. Compared to controls, significantly more ACC, but unexpectedly not CBLH or PMG patients, had rare genic CNVs over one megabase (p = 1.48×10-3; odds ratio [OR] = 3.19; 95% confidence interval [CI] = 1.89-5.39). Rare genic CNVs were those that impacted at least one gene in less than 1% of the combined population of patients and controls. Compared to controls, significantly more ACC but not CBLH or PMG patients had rare CNVs impacting over 20 genes (p = 0.01; OR = 2.95; 95% CI = 1.69-5.18). Independent qPCR confirmation showed that 9.4% of ACC patients had de novo CNVs. These, in comparison to inherited CNVs, preferentially overlapped de novo CNVs previously observed in patients with autism spectrum disorders (p = 3.06×10-4; OR = 7.55; 95% CI = 2.40-23.72). Interestingly, numerous reports have shown a reduced corpus callosum area in autistic patients, and diminished social and executive function in many ACC patients. We also confirmed and refined previously known CNVs, including significantly narrowing the 8p23.1-p11.1 duplication present in 2% of our current ACC cohort. We found six novel CNVs, each in a single patient, that are likely deleterious: deletions of 1p31.3-p31.1, 1q31.2-q31.3, 5q23.1, and 15q11.2-q13.1; and duplications of 2q11.2-q13 and 11p14.3-p14.2. One ACC patient with microcephaly had a paternally inherited deletion of 16p13.11 that included NDE1. Exome sequencing identified a recessive maternally inherited nonsense mutation in the non-deleted allele of NDE1, revealing the complexity of ACC genetics. This is the first systematic study of CNVs in congenital brain malformations, and shows a much higher prevalence of large gene-rich CNVs in ACC than in CBLH and PMG.
Single-cell time-series mapping of cell fate trajectories reveals an expanded developmental potential for human PSC-derived distal lung progenitors
Alveolar epithelial type 2 cells (AEC2s) are the facultative progenitors responsible for maintaining lung alveoli throughout life, yet are difficult to access from patients for biomedical research or lung regeneration applications. Here we engineer AEC2s from human induced pluripotent stem cells (iPSCs) in vitro and use single cell RNA sequencing (scRNA-seq) to profile the detailed kinetics of their differentiation over time. We focus on both the desired target cells as well as those that appear to diverge to alternative endodermal fates. By combining scRNA-seq with lentiviral barcoding to trace differentiating clones, we reveal the bifurcating cell fate trajectories followed as primordial lung progenitors differentiate into mature AEC2s. We define the global transcriptomic signatures of primary developing human AEC2s from fetal through adult stages in order to identify the subset of in vitro differentiating cells that appear to recapitulate the path of in vivo development. In addition, we develop computational methods based on Continuous State Hidden Markov Models (CSHMM) to identify the precise timing and type of signals, such as over-exuberant Wnt responses, that induce some early multipotent NKX2-1+ progenitors to lose lung fate as they clonally diverge into a variety of non-lung endodermal lineages. Finally, we find that this initial developmental plasticity is regulatable via Wnt modulation, and subsides over time, ultimately resulting in iPSC-derived AEC2s that exhibit a stable phenotype and nearly limitless self-renewal capacity in vitro. Our methods and computational approaches can be widely applied to study and control directed differentiation, producing an inexhaustible supply of mature lineages, exemplified here by the generation of AEC2s. Footnotes * http://cosimo.junding.me
Durable alveolar engraftment of PSC-derived lung epithelial cells into immunocompetent mice
Durable reconstitution of the injured distal lung epithelium with pluripotent stem cell (PSC) derivatives, if realized, would represent a promising potential therapy for diseases that result from alveolar damage. Here we differentiate murine PSCs in vitro into self-renewing lung epithelial progenitors able to engraft into the injured distal lung epithelium of immunocompetent, syngeneic mouse recipients. Emulating the roadmap of the developing embryo, we generate transplantable PSC-derived Nkx2-1+/Sox9+ lung epithelial progenitors that are highly similar to cultured primary embryonic distal lung bud tip progenitors. These cells display a stable phenotype after frozen archiving or extensive expansion in culture, providing a nearly inexhaustible source of cells that can be engrafted into syngeneic injured mouse lungs without the need for immunosuppression. After transplantation PSC-derived tip-like progenitors downregulate Sox9 and mature in the distal lung, upregulating alveolar type 2 cell markers or assuming the flat morphology and molecular phenotype of terminally differentiated alveolar type 1 cells. After months in vivo, donor-derived cells retain their alveolar epithelial type 2-like and type 1-like phenotypes, as characterized by single cell RNA sequencing, ultrastructural analyses, in vivo histologic profiling, and ex vivo organoid assays that demonstrate continued capacity of the engrafted cells to proliferate and differentiate. These results indicate durable reconstitution of the distal lung′s facultative progenitor and differentiated epithelial cell compartments in vivo with PSC-derived cells, thus establishing a novel model for pulmonary cell therapy which can be utilized to better understand the mechanisms and utility of engraftment prior to future clinical studies. Competing Interest Statement The authors have declared no competing interest.
TBX5 drives Aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network coordinating cardiopulmonary development
The gene regulatory networks that coordinate the development of the cardiac and pulmonary systems are essential for terrestrial life but poorly understood. The T-box transcription factor Tbx5 is critical for both pulmonary specification and heart development, but how these activities are mechanistically integrated remains unclear. We show that Tbx5 regulates an evolutionarily conserved retinoic acid (RA)-Hedgehog-Wnt signaling cascade coordinating cardiopulmonary development. We demonstrate that Tbx5 directly maintains expression of the RA-synthesizing enzyme Aldh1a2 in the foregut lateral plate mesoderm via an intronic enhancer that is evolutionarily conserved among terrestrial vertebrates. Tbx5 promotes posterior second heart field identity in a positive feedback loop with RA, antagonizing a Fgf8-Cyp regulatory module and restricting FGF activity to the anterior. Tbx5/Aldh1a2-dependent RA signaling also directly activates Shh transcription in the adjacent foregut endoderm through the conserved MACS1 enhancer. Epithelial Hedgehog then signals back to the mesoderm, where together with Tbx5 it activates expression of Wnt2/2b that ultimately induce pulmonary fate in the foregut endoderm. These results provide mechanistic insight into the interrelationship between heart and lung development informing cardiopulmonary evolution and birth defects. Tbx5 regulates second heart field patterning and pulmonary development via retinoic acid (RA) and Hedgehog (Hh) signaling. Tbx5 directly maintains transcription of the RA-synthesizing enzyme Aldh1a2 in the posterior second heart field mesoderm via an evolutionarily conserved intronic enhancer. Downstream of Tbx5, RA directly promotes Shh transcription through the evolutionarily conserved MACS1 endoderm enhancer. Downstream of Tbx5, RA suppresses FGF signaling to pattern the second heart field while promoting a Hedgehog-Wnt2/2b signaling cascade that induces pulmonary fate. Tbx5-dependent Retinoic Acid signaling regulates an evolutionarily conserved gene regulatory network that coordinates cardiac and pulmonary development.