Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
107 result(s) for "Hertel, Dietrich"
Sort by:
Carbon costs and benefits of Indonesian rainforest conversion to plantations
Land-use intensification in the tropics plays an important role in meeting global demand for agricultural commodities but generates high environmental costs. Here, we synthesize the impacts of rainforest conversion to tree plantations of increasing management intensity on carbon stocks and dynamics. Rainforests in Sumatra converted to jungle rubber, rubber, and oil palm monocultures lost 116 Mg C ha −1 , 159 Mg C ha −1 , and 174 Mg C ha −1 , respectively. Up to 21% of these carbon losses originated from belowground pools, where soil organic matter still decreases a decade after conversion. Oil palm cultivation leads to the highest carbon losses but it is the most efficient land use, providing the lowest ratio between ecosystem carbon storage loss or net primary production (NPP) decrease and yield. The imbalanced sharing of NPP between short-term human needs and maintenance of long-term ecosystem functions could compromise the ability of plantations to provide ecosystem services regulating climate, soil fertility, water, and nutrient cycles. Rainforest conversion to plantations driven by global demand for agricultural products generates high environmental costs. Here, the authors show that the high oil palm plantation production efficiency is associated with decreased carbon storage and slower organic matter cycling that affect ecosystem services.
Fine root biomass and dynamics in beech forests across a precipitation gradient - is optimal resource partitioning theory applicable to water-limited mature trees?
1. Optimal resource partitioning theory predicts that plants should increase the ratio between water absorbing and transpiring surfaces under short water supply. An increase in fine root mass and surface area relative to leaf area has frequently been found in herbaceous plants, but supporting evidence from mature trees is scarce and several results are contradictory. 2. In 12 mature Fagus sylvatica forests across a precipitation gradient (820-540 mm yr⁻¹), we tested several predictions of the theory by analysing the dependence of standing fine root biomass, fine root production and fine root morphology on mean annual precipitation (MAP), the precipitation of the study year, and stand structural and edaphic variables. The water storage capacity of the soil (WSC) was included as a covariable by comparing pairs of stands on sandy (lower WSC) and loam-richer soils (higher WSC). 3. Fine root biomass, total fine root surface area, fine root production and the fine root : leaf biomass production ratio markedly increased with reduced MAP and precipitation in the study year, while WSC was only a secondary factor and stand structure had no effect. 4. The precipitation effect on fine root biomass and production was more pronounced in stands on sandy soil with lower WSC, which had, at equal precipitation, a higher fine root biomass and productivity than stands on loam-richer soil. 5. The high degree of allocational plasticity in mature F. sylvatica trees contrasts with a low morphological plasticity of the fine roots. On the more extreme sandy soils, a significant decrease in mean fine root diameter and increase in specific root area with decreasing precipitation were found; a similar effect was absent on the loam-richer soils. 6. Synthesis. In support of optimal partitioning theory, mature Fagus sylvatica trees showed a remarkable allocational plasticity as a long-term response to significant precipitation reduction with a large increase in the size and productivity of the fine root system, while only minor adaptive modifications occurred in root morphology. More severe summer droughts in a future warmer climate may substantially alter the above-/below-ground C partitioning of this tree species with major implications for the forest C cycle.
Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses
One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.
Effects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient
Saltmarsh plants are exposed to multiple stresses including tidal inundation, salinity, wave action and sediment anoxia, which require specific root system adaptations to secure sufficient resource capture and firm anchorage in a temporary toxic environment. It is well known that many saltmarsh species develop large below-ground biomass (roots and rhizomes) but relations between fine roots, in particular, and the abiotic conditions in salt marshes are widely unknown. We studied fine root mass (<2 mm in diameter), fine root depth distribution and fine root morphology in three typical communities ( -dominated pioneer zone, -dominated lower marsh, -dominated upper marsh) across elevational gradients in two tidal salt marshes of the German North Sea coast [a mostly sandy marsh on a barrier island (Spiekeroog), and a silty-clayey marsh on the mainland coast (Westerhever)]. Fine root mass in the 0-40 cm profile ranged between 750 and 2,500 g m in all plots with maxima at both sites in the lower marsh with intermediate inundation frequency and highest plant species richness indicating an effect of biodiversity on fine root mass. Fine root mass and, even more, total fine root surface area (maximum 340 m m ) were high compared to terrestrial grasslands, and were greater in the nutrient-poorer Spiekeroog marsh. Fine root density showed only a slight or no decrease toward 40 cm depth. We conclude that the standing fine root mass and morphology of these salt marshes is mainly under control of species identity and nutrient availability, but species richness is especially influential. The plants of the pioneer zone and lower marsh possess well adapted fine roots and large standing root masses despite the often water-saturated sediment.
Opening up new niche dimensions: The stoichiometry of soil microarthropods in European beech and Norway spruce forests
Niche theory fundamentally contributed to the understanding of animal diversity. However, in soil, the diversity of animals seems enigmatic since the soil is a rather homogeneous habitat, and soil animals are often generalist feeders. A new approach to understand soil animal diversity is the use of ecological stoichiometry. The elemental composition of animals may explain their occurrence, distribution, and density. This approach has been used before in soil macrofauna, but this study is the first to investigate soil mesofauna. Using inductively coupled plasma optic emission spectrometry (ICP‐OES), we analyzed the concentration of a wide range of elements (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Zn) in 15 soil mite taxa (Oribatida, Mesostigmata) from the litter of two different forest types (beech, spruce) in Central Europe (Germany). Additionally, the concentration of carbon and nitrogen, and their stable isotope ratios (15N/14N, 13C/12C), reflecting their trophic niche, were measured. We hypothesized that (1) stoichiometry differs between mite taxa, (2) stoichiometry of mite taxa occurring in both forest types is not different, and (3) element composition is correlated to trophic level as indicated by 15N/14N ratios. The results showed that stoichiometric niches of soil mite taxa differed considerably indicating that elemental composition is an important niche dimension of soil animal taxa. Further, stoichiometric niches of the studied taxa did not differ significantly between the two forest types. Calcium was negatively correlated with trophic level indicating that taxa incorporating calcium carbonate in their cuticle for defense occupy lower trophic positions in the food web. Furthermore, a positive correlation of phosphorus with trophic level indicated that taxa higher in the food web have higher energetic demand. Overall, the results indicate that ecological stoichiometry of soil animals is a promising tool for understanding their diversity and functioning. Soil mite taxa differed in their stoichiometry, indicating the existence of multidimensional stoichiometric niches in soil mites. Litter stoichiometry as well as stoichiometric niches between the two forest types did not differ pointing to limited elemental niche plasticity. Negative correlation between Ca and trophic level of soil mites indicates increased skeletal hardening as a defense in taxa low in the food web and positive correlation between phosphorus and trophic level indicates higher energetic demand of taxa high in the food web.
Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production
Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPPwₒₒdy) in natural lowland forests, rubber agroforests under natural tree cover (“jungle rubber”), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPPwₒₒdy increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.
Multifunctional shade-tree management in tropical agroforestry landscapes — a review
1. Agricultural intensification reduces ecological resilience of land-use systems, whereas paradoxically, environmental change and climate extremes require a higher response capacity than ever. Adaptation strategies to environmental change include maintenance of shade trees in tropical agroforestry, but conversion of shaded to unshaded systems is common practice to increase short-term yield. 2. In this paper, we review the short-term and long-term ecological benefits of shade trees in coffee Coffea arabica, C. canephora and cacao Theobroma cacao agroforestry and emphasize the poorly understood, multifunctional role of shade trees for farmers and conservation alike. 3. Both coffee and cacao are tropical understorey plants. Shade trees in agroforestry enhance functional biodiversity, carbon sequestration, soil fertility, drought resistance as well as weed and biological pest control. However, shade is needed for young cacao trees only and is less important in older cacao plantations. This changing response to shade regime with cacao plantation age often results in a transient role for shade and associated biodiversity in agroforestry. 4. Abandonment of old, unshaded cacao in favour of planting young cacao in new, thinned forest sites can be named 'short-term cacao boom-and-bust cycle', which counteracts tropical forest conservation. In a 'long-term cacao boom-and-bust cycle', cacao boom can be followed by cacao bust due to unmanageable pest and pathogen levels (e.g. in Brazil and Malaysia). Higher pest densities can result from physiological stress in unshaded cacao and from the larger cacao area planted. Risk-averse farmers avoid long-term vulnerability of their agroforestry systems by keeping shade as an insurance against insect pest outbreaks, whereas yield-maximizing farmers reduce shade and aim at short-term monetary benefits. 5. Synthesis and applications. Sustainable agroforestry management needs to conserve or create a diverse layer of multi-purpose shade trees that can be pruned rather than removed when crops mature. Incentives from payment-for-ecosystem services and certification schemes encourage farmers to keep high to medium shade tree cover. Reducing pesticide spraying protects functional agrobiodiversity such as antagonists of pests and diseases, pollinating midges determining cacao yields and pollinating bees enhancing coffee yield. In a landscape perspective, natural forest along-side agroforestry allows noncrop-crop spillover of a diversity of functionally important organisms. Knowledge transfer between farmers, agronomists and ecologists in a participatory approach helps to encourage a shade management regime that balances economic and ecological needs and provides a 'diversified food-and-cash crop' livelihood strategy.
Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity
The conversion of tropical rainforest to agricultural systems such as oil palm alters biodiversity across a large range of interacting taxa and trophic levels. Yet, it remains unclear how direct and cascading effects of land-use change simultaneously drive ecological shifts. Combining data from a multi-taxon research initiative in Sumatra, Indonesia, we show that direct and cascading land-use effects alter biomass and species richness of taxa across trophic levels ranging from microorganisms to birds. Tropical land use resulted in increases in biomass and species richness via bottom-up cascading effects, but reductions via direct effects. When considering direct and cascading effects together, land use was found to reduce biomass and species richness, with increasing magnitude at higher trophic levels. Our analyses disentangle the multifaceted effects of land-use change on tropical ecosystems, revealing that biotic interactions on broad taxonomic scales influence the ecological outcome of anthropogenic perturbations to natural ecosystems. Direct and cascading land-use effects alter biomass and species richness of taxa across trophic levels ranging from microorganisms to birds in a multi-taxon research initiative in Sumatra, Indonesia.
Climatic Drivers of Mast Fruiting in European Beech and Resulting C and N Allocation Shifts
European beech shows mast fruiting at intervals of 2-20 years with a recent increase in frequency. It is not precisely known which climatic or endogenous factors are the proximate causes of masting. We recorded fruit mass production in 11 beech stands across a climate gradient over 4 years, analyzed the influence of climatic, edaphic, and stand structural parameters on fructification, and quantified carbon (C) and nitrogen (N) allocation to leaf and fruit mass production. The solar radiation total in June and July of the year preceding a mast year (JJ₋₁) was the parameter most closely related to fruit mass production, whereas no influence was found for drought. Radiation induced flowering and subsequent fruit production in beech apparently through a threshold response when the long-term mean of June-July radiation was exceeded by more than 5%. Full masting was associated with a significantly smaller leaf size and stand leaf area in the mast year and it significantly lowered foliar N content in the mast and post-mast year. We conclude that radiation totals and the N status of the foliage jointly govern the temporal pattern of masting in beech, presumably by controlling the photosynthetic activity in early summer. Anthropogenic increases in N deposition and atmospheric [CO₂] thus have the potential to increase masting frequency which can substantially alter forest productivity and forest biogeochemical cycles.
Facultative mycorrhization in a fern (Struthiopteris spicant L. Weiss) is bound to light intensity
Background The establishment of mycorrhizal relationships between a fungus and a plant typically enhances nutrient and water uptake for the latter while securing a carbon source for the fungus. However, under a particular set of environmental conditions, such as low availability of light and abundant nutrients in the soil, the resources invested in the maintenance of the fungi surpass the benefits obtained by the host. In those cases, facultative mycorrhizal plants are capable of surviving without symbiosis. Facultative mycorrhization in ferns has been overlooked until now. The present study measured the response of Struthiopteris spicant L. Weiss, and its root-associated fungi to different levels of light and nutrient availability in terms of growth, mycorrhizal presence, and leaf nutrient content. This fern species exhibits a great tolerance to variable light, nutrient, and pH conditions, and it has been found with and without mycorrhizae. We conducted a greenhouse experiment with 80 specimens of S. spicant and three factors (Light, Phosphorus, and Nitrogen) resulting in eight treatments. Results We found a significant influence of the factor light on fungal community composition, plant biomass, and nutrient accumulation. Departing from a lack of colonization at the initial stage, plants showed a remarkable increment of more than 80% in the arbuscular mycorrhizal fungi (AMF) richness and abundance in their roots when grown under high light conditions, compared with the ones in low light. We also observed an upward trend of C:P and C:N ratios and the above- and belowground biomass production when AMF abundance increased. Furthermore, the compositional analysis of the whole fungal communities associated with S. spicant roots revealed clear differences among low-light and high-light treatments. Conclusions This study is the first to investigate the importance of light and nutrient availability in determining fern-AMF relationships. We confirmed that Struthiopteris spicant is a facultative mycorrhizal plant. The composition and diversity of AMF found in the roots of this fern are strongly influenced by light and less by nutrient conditions. Our study shows that ferns respond very sensitively to changes in environmental factors, leading to shifts in the associated mycorrhizal communities.