Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
62 result(s) for "Hertz, Christine"
Sort by:
X-ray microtomography using correlation of near-field speckles for material characterization
Nondestructive microscale investigation of objects is an invaluable tool in life and materials sciences. Currently, such investigation is mainly performed with X-ray laboratory systems, which are based on absorption-contrast imaging and cannot access the information carried by the phase of the X-ray waves. The phase signal is, nevertheless, of great value in X-ray imaging as it is complementary to the absorption information and in general more sensitive to visualize features with small density differences. Synchrotron facilities, which deliver a beam of high brilliance and high coherence, provide the ideal condition to develop such advanced phase-sensitive methods, but their access is limited. Here we show how a small modification of a laboratory setup yields simultaneously quantitative and 3D absorption and phase images of the object. This single-shot method is based on correlation of X-ray near-field speckles and represents a significant broadening of the capabilities of laboratory-based X-ray tomography.
Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder
Integration of emerging epigenetic information with autism spectrum disorder (ASD) genetic results may elucidate functional insights not possible via either type of information in isolation. Here we use the genotype and DNA methylation (DNAm) data from cord blood and peripheral blood to identify SNPs associated with DNA methylation (meQTL lists). Additionally, we use publicly available fetal brain and lung meQTL lists to assess enrichment of ASD GWAS results for tissue-specific meQTLs. ASD-associated SNPs are enriched for fetal brain (OR = 3.55; P  < 0.001) and peripheral blood meQTLs (OR = 1.58; P  < 0.001). The CpG targets of ASD meQTLs across cord, blood, and brain tissues are enriched for immune-related pathways, consistent with other expression and DNAm results in ASD, and reveal pathways not implicated by genetic findings. This joint analysis of genotype and DNAm demonstrates the potential of both brain and blood-based DNAm for insights into ASD and psychiatric phenotypes more broadly. “There have been a number of recent epigenetic studies on autism spectrum disorder. Here, the authors integrate genetic and epigenetic data from cord and peripheral blood and also from brain tissues to show the potential of blood-based epigenetic data to provide insights into psychiatric disorders.”
Pre-treatment amino acids and risk of paclitaxel-induced peripheral neuropathy in SWOG S0221
BackgroundChemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting and debilitating neurotoxicity of many commonly used anti-cancer agents, including paclitaxel. The objective of this study was to confirm the previously found inverse association between pre-treatment blood concentrations of histidine and CIPN occurrence and examine relationships of other amino acids with CIPN severity.MethodsPre-treatment serum concentrations of 20 amino acids were measured in the SWOG S0221 (NCT00070564) trial of patients with early-stage breast cancer receiving paclitaxel. The associations between amino acids and CIPN severity were tested in regression analysis adjusted for paclitaxel schedule, age, self-reported race, and body mass index with Bonferroni correction. The network of metabolic pathways of amino acids was analyzed using over-representation analysis. The partial correlation network of amino acids was evaluated using a debiased sparse partial correlation algorithm.ResultsIn the primary analysis, histidine concentration was not associated with CIPN occurrence (odds ratio (OR) = 0.97 [0.83, 1.13], p = 0.72). In secondary analyses, higher concentrations of four amino acids, glutamate (β = 0.58 [0.23, 0.93], p = 0.001), phenylalanine (β = 0.54 [0.19, 0.89], p = 0.002), tyrosine (β = 0.57 [0.23, 0.91], p = 0.001), and valine (β = 0.58 [0.24, 0.92], p = 0.001) were associated with more severe CIPN, but none of these associations retained significance after adjustment. In the over-representation analysis, no amino acid metabolic pathways were significantly enriched (all FDR > 0.05). In the network of enriched pathways, glutamate metabolism had the highest centrality.ConclusionsThis analysis showed that pre-treatment serum amino acid concentrations are not strongly predictive of CIPN severity. Prospectively designed studies that assess non-amino acid metabolomics predictors are encouraged.
Distributional Properties and Criterion Validity of a Shortened Version of the Social Responsiveness Scale: Results from the ECHO Program and Implications for Social Communication Research
Prior work proposed a shortened version of the Social Responsiveness Scale (SRS), a commonly used quantitative measure of social communication traits. We used data from 3031 participants (including 190 ASD cases) from the Environmental Influences on Child Health Outcomes (ECHO) Program to compare distributional properties and criterion validity of 16-item “short” to 65-item “full” SRS scores. Results demonstrated highly overlapping distributions of short and full scores. Both scores separated case from non-case individuals by approximately two standard deviations. ASD prediction was nearly identical for short and full scores (area under the curve values of 0.87, 0.86 respectively). Findings support comparability of shortened and full scores, suggesting opportunities to increase efficiency. Future work should confirm additional psychometric properties of short scores.
Pleiotropic Mechanisms Indicated for Sex Differences in Autism
Sexual dimorphism in common disease is pervasive, including a dramatic male preponderance in autism spectrum disorders (ASDs). Potential genetic explanations include a liability threshold model requiring increased polymorphism risk in females, sex-limited X-chromosome contribution, gene-environment interaction driven by differences in hormonal milieu, risk influenced by genes sex-differentially expressed in early brain development, or contribution from general mechanisms of sexual dimorphism shared with secondary sex characteristics. Utilizing a large single nucleotide polymorphism (SNP) dataset, we identify distinct sex-specific genome-wide significant loci. We investigate genetic hypotheses and find no evidence for increased genetic risk load in females, but evidence for sex heterogeneity on the X chromosome, and contribution of sex-heterogeneous SNPs for anthropometric traits to ASD risk. Thus, our results support pleiotropy between secondary sex characteristic determination and ASDs, providing a biological basis for sex differences in ASDs and implicating non brain-limited mechanisms.
Mucosal immune responses predict clinical outcomes during influenza infection independently of age and viral load
Children are an at-risk population for developing complications following influenza infection, but immunologic correlates of disease severity are not understood. We hypothesized that innate cellular immune responses at the site of infection would correlate with disease outcome. To test the immunologic basis of severe illness during natural influenza virus infection of children and adults at the site of infection. An observational cohort study with longitudinal sampling of peripheral and mucosal sites in 84 naturally influenza-infected individuals, including infants. Cellular responses, viral loads, and cytokines were quantified from nasal lavages and blood, and correlated to clinical severity. We show for the first time that although viral loads in children and adults were similar, innate responses in the airways were stronger in children and varied considerably between plasma and site of infection. Adjusting for age and viral load, an innate immune profile characterized by increased nasal lavage monocyte chemotactic protein-3, IFN-α2, and plasma IL-10 levels at enrollment predicted progression to severe disease. Increased plasma IL-10, monocyte chemotactic protein-3, and IL-6 levels predicted hospitalization. This inflammatory cytokine production correlated significantly with monocyte localization from the blood to the site of infection, with conventional monocytes positively correlating with inflammation. Increased frequencies of CD14(lo) monocytes were in the airways of participants with lower inflammatory cytokine levels. An innate profile was identified that correlated with disease progression independent of viral dynamics and age. The airways and blood displayed dramatically different immune profiles emphasizing the importance of cellular migration and localized immune phenotypes.