Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
79
result(s) for
"Herzig, Volker"
Sort by:
Animal Venoms—Curse or Cure?
2021
An estimated 15% of animals are venomous, with representatives spread across the majority of animal lineages. Animals use venoms for various purposes, such as prey capture and predator deterrence. Humans have always been fascinated by venomous animals in a Janus-faced way. On the one hand, humans have a deeply rooted fear of venomous animals. This is boosted by their largely negative image in public media and the fact that snakes alone cause an annual global death toll in the hundreds of thousands, with even more people being left disabled or disfigured. Consequently, snake envenomation has recently been reclassified by the World Health Organization as a neglected tropical disease. On the other hand, there has been a growth in recent decades in the global scene of enthusiasts keeping venomous snakes, spiders, scorpions, and centipedes in captivity as pets. Recent scientific research has focussed on utilising animal venoms and toxins for the benefit of humanity in the form of molecular research tools, novel diagnostics and therapeutics, biopesticides, or anti-parasitic treatments. Continued research into developing efficient and safe antivenoms and promising discoveries of beneficial effects of animal toxins is further tipping the scales in favour of the “cure” rather than the “curse” prospect of venoms.
Journal Article
The Cystine Knot Is Responsible for the Exceptional Stability of the Insecticidal Spider Toxin ω-Hexatoxin-Hv1a
2015
The inhibitor cystine knot (ICK) is an unusual three-disulfide architecture in which one of the disulfide bonds bisects a loop formed by the two other disulfide bridges and the intervening sections of the protein backbone. Peptides containing an ICK motif are frequently considered to have high levels of thermal, chemical and enzymatic stability due to cross-bracing provided by the disulfide bonds. Experimental studies supporting this contention are rare, in particular for spider-venom toxins, which represent the largest diversity of ICK peptides. We used ω-hexatoxin-Hv1a (Hv1a), an insecticidal toxin from the deadly Australian funnel-web spider, as a model system to examine the contribution of the cystine knot to the stability of ICK peptides. We show that Hv1a is highly stable when subjected to temperatures up to 75 °C, pH values as low as 1, and various organic solvents. Moreover, Hv1a was highly resistant to digestion by proteinase K and when incubated in insect hemolymph and human plasma. We demonstrate that the ICK motif is essential for the remarkable stability of Hv1a, with the peptide’s stability being dramatically reduced when the disulfide bonds are eliminated. Thus, this study demonstrates that the ICK motif significantly enhances the chemical and thermal stability of spider-venom peptides and provides them with a high level of protease resistance. This study also provides guidance to the conditions under which Hv1a could be stored and deployed as a bioinsecticide.
Journal Article
Create Guidelines for Characterization of Venom Peptides
2016
In the course of my duties as a curator for the ArachnoServer database [1,2], I recently came across the article published by Binda et al. in Toxins [3].[...].In the course of my duties as a curator for the ArachnoServer database [1,2], I recently came across the article published by Binda et al. in Toxins [3].[...].
Journal Article
Selective NaV1.1 activation rescues Dravet syndrome mice from seizures and premature death
by
Herzig, Volker
,
Chow, Chun Yuen
,
Richardson, Robert J.
in
Biological Sciences
,
Neuroscience
,
PNAS Plus
2018
Dravet syndrome is a catastrophic, pharmacoresistant epileptic encephalopathy. Disease onset occurs in the first year of life, followed by developmental delay with cognitive and behavioral dysfunction and substantially elevated risk of premature death. The majority of affected individuals harbor a loss-of-function mutation in one allele of SCN1A, which encodes the voltage-gated sodium channel NaV1.1. Brain NaV1.1 is primarily localized to fast-spiking inhibitory interneurons; thus the mechanism of epileptogenesis in Dravet syndrome is hypothesized to be reduced inhibitory neurotransmission leading to brain hyperexcitability. We show that selective activation of NaV1.1 by venom peptide Hm1a restores the function of inhibitory interneurons from Dravet syndrome mice without affecting the firing of excitatory neurons. Intracerebroventricular infusion of Hm1a rescues Dravet syndrome mice from seizures and premature death. This precision medicine approach, which specifically targets the molecular deficit in Dravet syndrome, presents an opportunity for treatment of this intractable epilepsy.
Journal Article
Towards a generic prototyping approach for therapeutically-relevant peptides and proteins in a cell-free translation system
2022
Advances in peptide and protein therapeutics increased the need for rapid and cost-effective polypeptide prototyping. While in vitro translation systems are well suited for fast and multiplexed polypeptide prototyping, they suffer from misfolding, aggregation and disulfide-bond scrambling of the translated products. Here we propose that efficient folding of in vitro produced disulfide-rich peptides and proteins can be achieved if performed in an aggregation-free and thermodynamically controlled folding environment. To this end, we modify an
E. coli
-based in vitro translation system to allow co-translational capture of translated products by affinity matrix. This process reduces protein aggregation and enables productive oxidative folding and recycling of misfolded states under thermodynamic control. In this study we show that the developed approach is likely to be generally applicable for prototyping of a wide variety of disulfide-constrained peptides, macrocyclic peptides with non-native bonds and antibody fragments in amounts sufficient for interaction analysis and biological activity assessment.
Generic approach for rapid prototyping is essential for the progress of synthetic biology. Here the authors modify the cell-free translation system to control protein aggregation and folding and validate the approach by using single conditions for prototyping of various disulfide-constrained polypeptides.
Journal Article
The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens
2018
The assassin bug venom system plays diverse roles in prey capture, defence and extra-oral digestion, but it is poorly characterised, partly due to its anatomical complexity. Here we demonstrate that this complexity results from numerous adaptations that enable assassin bugs to modulate the composition of their venom in a context-dependent manner. Gland reconstructions from multimodal imaging reveal three distinct venom gland lumens: the anterior main gland (AMG); posterior main gland (PMG); and accessory gland (AG). Transcriptomic and proteomic experiments demonstrate that the AMG and PMG produce and accumulate distinct sets of venom proteins and peptides. PMG venom, which can be elicited by electrostimulation, potently paralyses and kills prey insects. In contrast, AMG venom elicited by harassment does not paralyse prey insects, suggesting a defensive role. Our data suggest that assassin bugs produce offensive and defensive venoms in anatomically distinct glands, an evolutionary adaptation that, to our knowledge, has not been described for any other venomous animal.
Venom can be used both offensively for prey capture and defensively to deter predators. Here, Walker and colleagues demonstrate that the assassin bug
Pristhesancus plagipennis
has two distinct venom glands that produce venoms with distinct compositions that can be elicited by different stimuli.
Journal Article
Enlightening the toxinological dark matter of spider venom enzymes
2024
Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.
Journal Article
The insecticidal potential of venom peptides
by
Herzig, Volker
,
Smith, Jennifer J.
,
Alewood, Paul F.
in
Animals
,
Araneae
,
Arthropod Venoms - chemistry
2013
Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey–predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.
Journal Article
Roles of a Y-Linked iDmrt1 Paralogue and Insulin-like Androgenic Gland Hormone in Sexual Development in the Tropical Rock Lobster, Panulirus ornatus
2025
Understanding the mechanisms of sexual development would pave the way for producing mono-sex populations to aid the aquaculture industry. This study investigates the functions of the Y-linked iDmrt1 paralogue (Po-iDMY) and insulin-like androgenic gland hormone (Po-IAG) in the process of sexual development in the tropical rock lobster, Panulirus ornatus (TRL). Previously, we identified that Po-iDMY, a male-specific heterogametic (Y-linked) paralogue of the autosomal Po-iDmrt1 found in TRL, is a second sex-linked iDmrt gene identified in invertebrates. Using 5′ and 3′ rapid amplification of cDNA ends and data from a draft male genome (with an assembly genome size of approximately 2.446 Gbp and 87% BUSCO completeness), we obtained the full-length Po-iDMY gene (encoding a protein of 312 amino acids). A 411 bp male-specific sequence located at the 3′ untranslated region of Po-iDMY mRNA was used as a sex marker, which was reported for the first time in our draft genome. However, Po-iDMY is not a master sex-determining factor since it was not expressed across developmental stages of embryos, juveniles and adults. Instead, we silenced Po-IAG at an early juvenile stage, generating two potential neo-females, implying that sexual manipulation could be a promising technique in TRL.
Journal Article
The Predatory Stink Bug Arma custos (Hemiptera: Pentatomidae) Produces a Complex Proteinaceous Venom to Overcome Caterpillar Prey
2023
Predatory stink bugs capture prey by injecting salivary venom from their venom glands using specialized stylets. Understanding venom function has been impeded by a scarcity of knowledge of their venom composition. We therefore examined the proteinaceous components of the salivary venom of the predatory stink bug Arma custos (Fabricius, 1794) (Hemiptera: Pentatomidae). We used gland extracts and venoms from fifth-instar nymphs or adult females to perform shotgun proteomics combined with venom gland transcriptomics. We found that the venom of A. custos comprised a complex suite of over a hundred individual proteins, including oxidoreductases, transferases, hydrolases, ligases, protease inhibitors, and recognition, transport and binding proteins. Besides the uncharacterized proteins, hydrolases such as venom serine proteases, cathepsins, phospholipase A2, phosphatases, nucleases, alpha-amylases, and chitinases constitute the most abundant protein families. However, salivary proteins shared by and unique to other predatory heteropterans were not detected in the A. custos venom. Injection of the proteinaceous (>3 kDa) venom fraction of A. custos gland extracts or venom into its prey, the larvae of the oriental armyworm Mythimna separata (Walker, 1865), revealed insecticidal activity against lepidopterans. Our data expand the knowledge of heteropteran salivary proteins and suggest predatory asopine bugs as a novel source for bioinsecticides.
Journal Article