Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Hespe, Geoffrey E."
Sort by:
Topical tacrolimus for the treatment of secondary lymphedema
Secondary lymphedema, a life-long complication of cancer treatment, currently has no cure. Lymphedema patients have decreased quality of life and recurrent infections with treatments limited to palliative measures. Accumulating evidence indicates that T cells play a key role in the pathology of lymphedema by promoting tissue fibrosis and inhibiting lymphangiogenesis. Here using mouse models, we show that topical therapy with tacrolimus, an anti-T-cell immunosuppressive drug, is highly effective in preventing lymphedema development and treating established lymphedema. This intervention markedly decreases swelling, T-cell infiltration and tissue fibrosis while significantly increasing formation of lymphatic collaterals with minimal systemic absorption. Animals treated with tacrolimus have markedly improved lymphatic function with increased collecting vessel contraction frequency and decreased dermal backflow. These results have profound implications for lymphedema treatment as topical tacrolimus is FDA-approved for other chronic skin conditions and has an established record of safety and tolerability. Secondary lymphedema is a debilitating disease with no cure. Here the authors show that topical application of an FDA-approved anti-T cell drug tacrolimus potently prevents development and alleviates pathologic changes of established lymphedema in mice, suggesting a new treatment for human patients.
Th2 Cytokines Inhibit Lymphangiogenesis
Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC) proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2) cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4) and interleukin-13 (IL-13) have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.
CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema
T cell-mediated responses have been implicated in the development of fibrosis, impaired lymphangiogenesis, and lymphatic dysfunction in secondary lymphedema. Here we show that CD4 + T cells are necessary for lymphedema pathogenesis by utilizing adoptive transfer techniques in CD4 knockout mice that have undergone tail skin and lymphatic excision or popliteal lymph node dissection. We also demonstrate that T cell activation following lymphatic injury occurs in regional skin-draining lymph nodes after interaction with antigen-presenting cells such as dendritic cells. CD4 + T cell activation is associated with differentiation into a mixed T helper type 1 and 2 phenotype, as well as upregulation of adhesion molecules and chemokines that promote migration to the skin. Most importantly, we find that blocking T cell release from lymph nodes using a sphingosine-1-phosphate receptor modulator prevents lymphedema, suggesting that this approach may have clinical utility. CD4 + T cells are critical for the development of lymphedema. Here the authors show how these cells contribute to lymphedema and identify that the sphingosine-1-phosphate receptor modulator FTY720 can prevent lymphedema in a mouse tail injury model by blocking the release of CD4 + T cells from the lymph nodes to the skin.
Inhibition of Inflammation and iNOS Improves Lymphatic Function in Obesity
Although recent studies have shown that obesity decreases lymphatic function, the cellular mechanisms regulating this response remain unknown. In the current study, we show that obesity results in perilymphatic accumulation of inflammatory cells and that local inhibition of this response with topical tacrolimus, an inhibitor of T cell differentiation, increases lymphatic vessel density, decreases perilymphatic iNOS expression, increases lymphatic vessel pumping frequency and restores lymphatic clearance of interstitial fluid to normal levels. Although treatment of obese mice with 1400W, a selective inhibitor of iNOS, also improved lymphatic collecting vessel contractile function, it did not completely reverse lymphatic defects. Mice deficient in CD4 + cells fed a high fat diet also gained weight relative to controls but were protected from lymphatic dysfunction. Taken together, our findings suggest that obesity-mediated lymphatic dysfunction is regulated by perilymphatic accumulation of inflammatory cells and that T cell inflammatory responses are necessary to initiate this effect.
Lymph Node Transplantation Decreases Swelling and Restores Immune Responses in a Transgenic Model of Lymphedema
Secondary lymphedema is a common complication of cancer treatment and recent studies have demonstrated that lymph node transplantation (LNT) can decrease swelling, as well as the incidence of infections. However, although these results are exciting, the mechanisms by which LNT improves these pathologic findings of lymphedema remain unknown. Using a transgenic mouse model of lymphedema, this study sought to analyze the effect of LNT on lymphatic regeneration and T cell-mediated immune responses. We used a mouse model in which the expression of the human diphtheria toxin receptor is driven by the FLT4 promoter to enable the local ablation of the lymphatic system through subdermal hindlimb diphtheria toxin injections. Popliteal lymph node dissection was subsequently performed after a two-week recovery period, followed by either orthotopic LNT or sham surgery after an additional two weeks. Hindlimb swelling, lymphatic vessel regeneration, immune cell trafficking, and T cell-mediated immune responses were analyzed 10 weeks later. LNT resulted in a marked decrease in hindlimb swelling, fibroadipose tissue deposition, and decreased accumulation of perilymphatic inflammatory cells, as compared to controls. In addition, LNT induced a marked lymphangiogenic response in both capillary and collecting lymphatic vessels. Interestingly, the resultant regenerated lymphatics were abnormal in appearance on lymphangiography, but LNT also led to a notable increase in dendritic cell trafficking from the periphery to the inguinal lymph nodes and improved adaptive immune responses. LNT decreases pathological changes of lymphedema and was shown to potently induce lymphangiogenesis. Lymphatic vessels induced by LNT were abnormal in appearance, but were functional and able to transport antigen-presenting cells. Animals treated with LNT have an increased ability to mount T cell-mediated immune responses when sensitized to antigens in the affected hindlimb.
Lymphatic Function Regulates Contact Hypersensitivity Dermatitis in Obesity
Obesity is a major risk factor for inflammatory dermatologic diseases, including atopic dermatitis and psoriasis. In addition, recent studies have shown that obesity impairs lymphatic function. As the lymphatic system is a critical regulator of inflammatory reactions, we tested the hypothesis that obesity-induced lymphatic dysfunction is a key regulator of cutaneous hypersensitivity reactions in obese mice. We found that obese mice have impaired lymphatic function, characterized by leaky capillary lymphatics and decreased collecting vessel pumping capacity. In addition, obese mice displayed heightened dermatitis responses to inflammatory skin stimuli, resulting in both higher peak inflammation and a delayed clearance of inflammatory responses. Injection of recombinant vascular endothelial growth factor-C remarkably increased lymphangiogenesis, lymphatic function, and lymphatic endothelial cell expression of chemokine (C–C motif) ligand 21, while decreasing inflammation and expression of inducible nitrous oxide synthase. These changes resulted in considerably decreased dermatitis responses in both lean and obese mice. Taken together, our findings suggest that obesity-induced changes in the lymphatic system result in an amplified and a prolonged inflammatory response.
Inhibition of Th2 Differentiation Accelerates Chronic Wound Healing by Facilitating Lymphangiogenesis
Background/Objectives: Chronic wounds pose a significant healthcare burden, and there remains no effective animal model for study. We aimed to develop a mouse model of chronic wounds that remain open for at least 4 weeks and to investigate the role of the lymphatic system in wound healing. Methods: Full-thickness excisional wounds were created on the dorsal surface of mouse tails to simulate chronic wounds. Lymphatic drainage was assessed using FITC–dextran lymphangiography. Histology and immunofluorescence were used to analyze immune cell infiltration. The effect of inhibiting Th2 differentiation via IL-4 and IL-13 neutralization on wound closure was also evaluated. Results: Our chronic wound model was successful, and wounds remained open for 4 weeks. Impaired lymphatic drainage was observed extending beyond the wound area. Increased CD4+ T-helper cell infiltration and Th2 cell accumulation were observed in the impaired lymphatic drainage zone. Inhibition of IL-4 and IL-13 accelerated wound healing. Conclusions: Impaired lymphatic drainage and Th2-mediated inflammation contribute to delayed healing, and gradients of lymphatic fluid flow are associated with spatial differences in lymphangiogenesis. Targeting Th2 cytokines may offer a novel therapeutic approach for chronic wounds.
Umbilicoplasty in Abdominoplasty: Modifications for Improved Aesthetic Results
Umbilicoplasty is a key component of any abdominoplasty as the umbilicus has been described as the central aesthetic subunit to the abdomen. Here, we describe our preferred technique for umbilicoplasty which involves a half-moon design with periumbilical defatting which in our hands produces consistent, aesthetically pleasing results.
Lymph Node Transplantation Decreases Swelling and Restores Immune Responses in a Transgenic Model of Lymphedema
Secondary lymphedema is a common complication of cancer treatment and recent studies have demonstrated that lymph node transplantation (LNT) can decrease swelling, as well as the incidence of infections. However, although these results are exciting, the mechanisms by which LNT improves these pathologic findings of lymphedema remain unknown. Using a transgenic mouse model of lymphedema, this study sought to analyze the effect of LNT on lymphatic regeneration and T cell-mediated immune responses. We used a mouse model in which the expression of the human diphtheria toxin receptor is driven by the FLT4 promoter to enable the local ablation of the lymphatic system through subdermal hindlimb diphtheria toxin injections. Popliteal lymph node dissection was subsequently performed after a two-week recovery period, followed by either orthotopic LNT or sham surgery after an additional two weeks. Hindlimb swelling, lymphatic vessel regeneration, immune cell trafficking, and T cell-mediated immune responses were analyzed 10 weeks later. LNT resulted in a marked decrease in hindlimb swelling, fibroadipose tissue deposition, and decreased accumulation of perilymphatic inflammatory cells, as compared to controls. In addition, LNT induced a marked lymphangiogenic response in both capillary and collecting lymphatic vessels. Interestingly, the resultant regenerated lymphatics were abnormal in appearance on lymphangiography, but LNT also led to a notable increase in dendritic cell trafficking from the periphery to the inguinal lymph nodes and improved adaptive immune responses. LNT decreases pathological changes of lymphedema and was shown to potently induce lymphangiogenesis. Lymphatic vessels induced by LNT were abnormal in appearance, but were functional and able to transport antigen-presenting cells. Animals treated with LNT have an increased ability to mount T cell-mediated immune responses when sensitized to antigens in the affected hindlimb.
Lymph Node Transplantation Decreases Swelling and Restores Immune Responses in a Transgenic Model of Lymphedema
Secondary lymphedema is a common complication of cancer treatment and recent studies have demonstrated that lymph node transplantation (LNT) can decrease swelling, as well as the incidence of infections. However, although these results are exciting, the mechanisms by which LNT improves these pathologic findings of lymphedema remain unknown. Using a transgenic mouse model of lymphedema, this study sought to analyze the effect of LNT on lymphatic regeneration and T cell-mediated immune responses. We used a mouse model in which the expression of the human diphtheria toxin receptor is driven by the FLT4 promoter to enable the local ablation of the lymphatic system through subdermal hindlimb diphtheria toxin injections. Popliteal lymph node dissection was subsequently performed after a two-week recovery period, followed by either orthotopic LNT or sham surgery after an additional two weeks. Hindlimb swelling, lymphatic vessel regeneration, immune cell trafficking, and T cell-mediated immune responses were analyzed 10 weeks later. LNT resulted in a marked decrease in hindlimb swelling, fibroadipose tissue deposition, and decreased accumulation of perilymphatic inflammatory cells, as compared to controls. In addition, LNT induced a marked lymphangiogenic response in both capillary and collecting lymphatic vessels. Interestingly, the resultant regenerated lymphatics were abnormal in appearance on lymphangiography, but LNT also led to a notable increase in dendritic cell trafficking from the periphery to the inguinal lymph nodes and improved adaptive immune responses. LNT decreases pathological changes of lymphedema and was shown to potently induce lymphangiogenesis. Lymphatic vessels induced by LNT were abnormal in appearance, but were functional and able to transport antigen-presenting cells. Animals treated with LNT have an increased ability to mount T cell-mediated immune responses when sensitized to antigens in the affected hindlimb.