Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Hevia-Larraín, Victoria"
Sort by:
Neither Chia Flour nor Whey Protein Supplementation Further Improves Body Composition or Strength Gains after a Resistance Training Program in Young Subjects with a Habitual High Daily Protein Intake
The aim of this study was to compare the potential additional effect of chia flour, whey protein, and a placebo juice to resistance training on fat-free mass (FFM) and strength gains in untrained young men. Eighteen healthy, untrained young men underwent an 8-week whole-body resistance training program, comprising three sessions per week. Subjects were randomized into three groups that after each training session consumed: (1) 30 g whey protein concentrate containing 23 g protein (WG), (2) 50 g chia flour containing 20 g protein (CG), or (3) a placebo not containing protein (PG). Strength tests (lower- and upper-limb one repetition maximum (1 RM) tests) and body composition analyses (dual-energy X-ray absorptiometry; DXA) were performed before (PRE) and after (POST) the intervention. Resistance training increased FFM and the 1 RM for each of the strength tests similarly in the three groups. FFM increased by 2.3% in WG (p = 0.04), by 3.6% in CG (p = 0.004), and by 3.0% in PG (p = 0.002)., and 1 RM increased in the different strength tests in the three groups (p < 0.05) with no difference between PG, CG, and WG. In conclusion, neither chia flour nor whey protein supplementation elicited an enhanced effect on FFM and strength gains after an 8-week resistance training program in healthy, untrained young men consuming a habitual high protein mixed diet (>1.2 g/kg/day).
High-Protein Plant-Based Diet Versus a Protein-Matched Omnivorous Diet to Support Resistance Training Adaptations: A Comparison Between Habitual Vegans and Omnivores
Background Acute protein turnover studies suggest lower anabolic response after ingestion of plant vs. animal proteins. However, the effects of an exclusively plant-based protein diet on resistance training-induced adaptations are under investigation. Objective To investigate the effects of dietary protein source [exclusively plant-based vs. mixed diet] on changes in muscle mass and strength in healthy young men undertaking resistance training. Methods Nineteen young men who were habitual vegans (VEG 26 ± 5 years; 72.7 ± 7.1 kg, 22.9 ± 2.3 kg/m 2 ) and nineteen young men who were omnivores (OMN 26 ± 4 years; 73.3 ± 7.8 kg, 23.6 ± 2.3 kg/m 2 ) undertook a 12-week, twice weekly, supervised resistance training program. Habitual protein intake was assessed at baseline and adjusted to 1.6 g kg −1  day −1 via supplemental protein (soy for VEG or whey for OMN). Dietary intake was monitored every four weeks during the intervention. Leg lean mass, whole muscle, and muscle fiber cross-sectional area (CSA), as well as leg-press 1RM were assessed before (PRE) and after the intervention (POST). Results Both groups showed significant (all p  < 0.05) PRE-to-POST increases in leg lean mass (VEG: 1.2 ± 1.0 kg; OMN: 1.2 ± 0.8 kg), rectus femoris CSA (VEG: 1.0 ± 0.6 cm 2 ; OMN: 0.9 ± 0.5 cm 2 ), vastus lateralis CSA (VEG: 2.2 ± 1.1 cm 2 ; OMN: 2.8 ± 1.0 cm 2 ), vastus lateralis muscle fiber type I (VEG: 741 ± 323 µm 2 ; OMN: 677 ± 617 µm 2 ) and type II CSA (VEG: 921 ± 458 µm 2 ; OMN: 844 ± 638 µm 2 ), and leg-press 1RM (VEG: 97 ± 38 kg; OMN: 117 ± 35 kg), with no between-group differences for any of the variables (all p  > 0.05). Conclusion A high-protein (~ 1.6 g kg −1  day −1 ), exclusively plant-based diet (plant-based whole foods + soy protein isolate supplementation) is not different than a protein-matched mixed diet (mixed whole foods + whey protein supplementation) in supporting muscle strength and mass accrual, suggesting that protein source does not affect resistance training-induced adaptations in untrained young men consuming adequate amounts of protein. Clinical Trial Registration NCT03907059. April 8, 2019. Retrospectively registered.
Number of high-protein containing meals correlates with muscle mass in pre-frail and frail elderly
BackgroundAging is accompanied by the inability to optimally respond to anabolic stimulus of nutrition, with consequent loss of muscle mass and functionality. It has been speculated that not only total protein intake, but also the per meal protein dose may have important implications to protein balance and, hence, muscle mass in middle-aged and older adults, but evidence is lacking in a more vulnerable population such as the frail elderly. The aim was to investigate possible associations between total protein intake and its per meal dose with multiple measures of muscle mass, strength, and functionality in a cohort of pre-frail and frail elderly individuals.MethodsOne-hundred-and-fifty-seven pre-frail and frail elderly individuals were assessed for total and per meal protein intake (food diaries), total and appendicular lean mass (DXA), vastus lateralis cross-sectional area [(CSA) B-mode ultrasound], and muscle function [leg-press and bench press 1-RM, timed-stands test, timed-up-and-go test, handgrip, and risk of falls (Biodex Balance System®)].ResultsProtein intake and number of meals with either ≥20 g or ≥30 g of protein were significantly associated (after controlling for confounding factors) with greater total and appendicular lean mass and vastus lateralis CSA.ConclusionsWe found that not only total protein intake but also the number of high-protein containing meals are associated with muscle mass in frail and pre-frail elderly.