Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
28 result(s) for "Heym, Michael"
Sort by:
Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography
Synthetic Aperture Radar Tomography (TomoSAR) allows the reconstruction of the 3D reflectivity of natural volume scatterers such as forests, thus providing an opportunity to infer structure information in 3D. In this paper, the potential of TomoSAR data at L-band to monitor temporal variations of forest structure is addressed using simulated and experimental datasets. First, 3D reflectivity profiles were extracted by means of TomoSAR reconstruction based on a Compressive Sensing (CS) approach. Next, two complementary indices for the description of horizontal and vertical forest structure were defined and estimated by means of the distribution of local maxima of the reconstructed reflectivity profiles. To assess the sensitivity and consistency of the proposed methodology, variations of these indices for different types of forest changes in simulated as well as in real scenarios were analyzed and assessed against different sources of reference data: airborne Lidar measurements, high resolution optical images, and forest inventory data. The forest structure maps obtained indicated the potential to distinguish between different forest stages and the identification of different types of forest structure changes induced by logging, natural disturbance, or forest management.
Shade tolerance and the functional trait - demography relationship in temperate and boreal forests
Despite being instrumental in forest ecology, the definition and nature of shade tolerance are complex and not beyond controversy. Moreover, the role it plays in the trait-demography relationship remains unclear. Here, we hypothesize that shade tolerance can be achieved by alternative combinations of traits depending on the species' functional group (evergreen vs. deciduous species) and that its ability to explain the array of traits involved in demography will also vary between these two groups. We used dimension reduction to identify the main trait spectra for 48 tree species, including 23 evergreens and 25 deciduous - dispersed across 21 genera and 13 families. We assessed the relationship between functional traits, shade tolerance, and demographic performance at high and low light using structural equation modelling. The dimensions found corresponded to the trait spectra previously observed in the literature and were significantly related to measures of demography. However, our results support the existence of a divergence between evergreen and deciduous species in the way shade tolerance relates to the demography of species along light gradients. We show that shade tolerance can be attained through different combination of traits depending on the functional and geographical context, and thus, its utilization as a predictor of forest dynamics and species coexistence requires previous knowledge on the role it plays in the demographic performance of the species under study.
Climatic water availability modifies tree functional diversity effects on soil organic carbon storage in European forests
Forest stand and environmental factors influence soil organic carbon (SOC) storage, but little is known about their relative impacts in different soil layers. Moreover, how environmental factors modulate the impact of stand factors, particularly species mixing, on SOC storage, is largely unexplored. In this study, conducted in 21 forest triplets (two monocultures of different species and their mixture on the same site) distributed in Europe, we tested the hypothesis that stand factors (functional identity and diversity) have stronger effects on topsoil (FF + 0–10 cm) C storage than environmental factors (climatic water availability, clay + silt content, oxalate-extractable Al–Alox) but that the opposite occurs in the subsoil (10–40 cm). We also tested the hypothesis that functional diversity improves SOC storage under high climatic water availability, clay + silt contents, and Alox. We characterized functional identity as the basal area proportion of broadleaved species (beech and/or oak), and functional diversity as the product of broadleaved and conifer (pine) proportions. The results show that functional identity was the main driver of topsoil C storage, while climatic water availability had the largest control on subsoil C storage. Functional diversity decreased topsoil C storage under increasing climatic water availability, but the opposite was observed in the subsoil. Functional diversity effects on topsoil C increased with increasing clay + silt content, while its effects on subsoil C were negative at increasing Alox content. This suggests that functional diversity effect on SOC storage changes along gradients in environmental factors and the direction of effects depends on soil depth.
Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient: experimental design, evaluation methods, and results
Background Most current approaches in forest science and practice require information about structure and growth of individual trees rather than - or in addition to - sum and mean values of growth and yield at forest stand level as provided by classic experimental designs. By inventing the wheel design, Nelder provided the possibility to turn to the individual tree as basic information unit. Such trials provide valuable insights into the dependency of growth on stand density at particular sites. Methods Here, we present an extension of the original design and evaluation by Nelder. (i) We established Nelder wheels along an environmental gradient through Europe in atlantic climate in Belgium and Germany, Mediterranean climate in Italy, continental climate in Hungary as well as on high land climate in Mexico. Such disjunct Nelder wheels along an environmental gradient can be regarded and analysed as a two-factor design with the factors of site condition and stand density. (ii) We present an advanced statistical approach to evaluate density dependent growth dynamics of trees planted in form of the Nelder design, which considers spatio-temporal autocorrelation. (iii) We prove the usefulness of the methods in improving ecological theory concerning density related productivity, trade-offs between facilitation and competition, and allometric relations between size variables. Results First evaluations based on remeasured Nelder wheels in oak ( Quercus robur L. ) show a size growth differentiation during the first observation period. In particular, height growth is accelerated under higher competition indicating facilitation effects. We detect furthermore a high variability in allometric relations. Conclusions The proposed design, methods, and results are discussed regarding their impact on forest practice, model building, and ecological theory. We conclude that the extended Nelder approach is highly efficient in providing currently lacking individual tree level information.
Species interactions increase the temporal stability of community productivity in Pinus sylvestris—Fagus sylvatica mixtures across Europe
1. There is increasing evidence that species diversity enhances the temporal stability (TS) of community productivity in different ecosystems, although its effect at the population and tree levels seems to be negative or neutral. Asynchrony in species responses to environmental conditions was found to be one of the main drivers of this stabilizing process. However, the effect of species mixing on the stability of productivity, and the relative importance of the associated mechanisms, remain poorly understood in forest communities. 2. We investigated the way mixing species influenced the TS of productivity in Pinus sylvestris L. and Fagus sylvatica L. forests, and attempted to determine the main drivers among overyielding, asynchrony between species annual growth responses to environmental conditions, and temporal shifts in species interactions. We used a network of 93 experimental plots distributed across Europe to compare the TS of basal area growth over a 15-year period (1999-2013) in mixed and monospecific forest stands at different organizational levels, namely the community, population and individual tree levels. 3. Mixed stands showed a higher TS of basal area growth than monospecific stands at the community level, but not at the population or individual tree levels. The TS at the community level was related to asynchrony between species growth in mixtures, but not to overyielding nor to asynchrony between species growth in monospecific stands. Temporal shifts in species interactions were also related to asynchrony and to the mixing effect on the TS. 4. Synthesis. Our findings confirm that species mixing can stabilize productivity at the community level, whereas there is a neutral or negative effect on stability at the population and individual tree levels. The contrasting findings regarding the relationships between the temporal stability and asynchrony in species growth in mixed and monospecific stands suggest that the main driver in the stabilizing process may be the temporal niche complementarity between species rather than differences in species' intrinsic responses to environmental conditions.
Drought Resistance of Norway Spruce (Picea abies L. Karst) and European Beech (Fagus sylvatica L.) in Mixed vs. Monospecific Stands and on Dry vs. Wet Sites. From Evidence at the Tree Level to Relevance at the Stand Level
Frequency of drought years is expected to increase through climate warming. Mixed stands have often shown to be more productive than monospecific stands in terms of yield and of resistance against windthrows and bark beetle attacks. Mixture of beech and spruce is of particular interest. However, little is known about its growth reaction to drought. Therefore, we investigated the drought reaction of beech and spruce in mixed vs. monospecific stands along an ecological gradient. In particular, we sought evidence for mixture-related resilience on the individual tree level. Therefore, we quantified the response of tree ring width to drought. Moreover, we attempted to explain the relevance of individual tree response on the stand level by quantifying the stand level loss of volume growth after drought. At the individual tree level, beech was found to be more resilient and resistant in pure vs. mixed stands. Spruce, in contrast, was favored by mixture, and this was especially evident on drier sites. Along the gradient, growth losses at stand level increased in both mixed and pure stands in 2015, with growth gains on the drier sites observed in the same drought year, in accordance with the Stress Gradient Hypothesis. However, the stand level difference of growth loss between mixed and pure stands was not statistically significant. Mitigating mixture effects on the level of the individual tree thus did not become evident on the level of the whole stand.
Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe
1. When tree-species mixtures are more productive than monocultures, higher light absorption is often suggested as a cause. However, few studies have quantified this effect and even fewer have examined which light-related interactions are most important, such as the effects of species interactions on tree allometric relationships and crown architecture, differences in vertical or horizontal canopy structure, phenology of deciduous species or the mixing effects on tree size and stand density. 2. In this study, measurements of tree sizes and stand structures were combined with a detailed tree-level light model (Maestra) to examine the contribution of each light-related interaction on tree- and stand-level light absorption at 21 sites, each of which contained a triplet of plots including a mixture and monocultures of Fagus syivatica and Pinus sylvestris (63 plots). These sites were distributed across the current distribution of these species within Europe. 3. Averaged across all sites, the light absorption of mixtures was 14% higher than the mean of the monocultures. At the whole community level, this positive effect of mixing on light absorption increased as canopy volume or site productivity increased, but was unrelated to climate. At the species population or individual tree levels, the mixing effect on light absorption resulted from light-related interactions involving vertical canopy structure, stand density, the presence of a deciduous species (F. syivatica), as well as the effects of mixing on tree size and allometric relationships between diameter and height, crown diameter and crown length. 4. The mixing effects on light absorption were only correlated with the mixing effects on growth for P. sylvestris, suggesting that the mixing effects on this species were driven by the light-related interactions, whereas mixing effects on F. syivatica or whole community growth were probably driven by non-light-related interactions. 5. Synthesis. The overall positive effect of mixing on light absorption was the result of a range of light-related interactions. However, the relative importance of these interactions varied between sites and is likely to vary between other species combinations and as stands develop.
Long-Term Productivity of Monospecific and Mixed Oak (Quercus petraea Matt. Liebl. and Quercus robur L.) Stands in Germany: Growth Dynamics and the Effect of Stand Structure
Wood production is one of the most important ecosystem service that forests provide to society. However, under changing climatic conditions, this appears to be subject to increasing uncertainties. In the present study we analyzed how long-term productivity of oak (Quercus petraea [Matt.] Liebl. and Quercus robur L.) stands has developed, how oak behaved on tree and stand level depending on the stand structure and which trade-offs can be observed. For the analyses, data from 147 long-term monospecific and mixed stands were investigated, which have been regularly recorded since 1898. Firstly, long-term stand productivity has increased up to 21% until 2020 as compared to 1960. This trend was observed for both, monospecific as well as mixed oak stands. Secondly, stand productivity was on average 19% higher in mixed compared to monospecific oak stands. This superiority can be explained by higher stand densities, a vigorous understory and the admixture of beech in particular. With increasing age, the observed positive effect of stand density was higher. Thirdly, individual oak productivity slowed down under interspecific competition, especially in young to mid-aged stands. In this context, the productivity of individual oaks depended strongly on their social position within the stand. Fourthly, in terms of growth partitioning larger trees contributed most in young oak stands, regardless of mixture. In order to preserve oak as a productive component of future mixed forests, the results suggest a silvicultural promotion of oak. Consistent management of dominant and vital oaks can achieve high productive trees while maintaining the positive characteristics of highly structured and mixed forests. A vigorous secondary stand can increase overall stand productivity at lower densities and allows silvicultural flexibility at the stand level. Creating vertical stand structure to reduce competition has only a limited positive effect on productivity of individual oaks that is highly related to its social status. Special attention should still be paid to beech as admixed tree species, which can continue to crowd oak even at higher stand ages.
Stand density sensitive biomass functions for young oak trees at four different European sites
Key message Relative biomass of tree compartments is dependent on plant size and stand density, with stand density being an important predictor, especially for belowground biomass and at high stand densities. Estimation of biomass production is an important issue against the background of climate change and carbon storage. Even though many studies investigated the biomass productivity of trees or single compartments, only few considered the belowground biomass. Further, there is a lack of studies focusing on young trees and considering further influencing factors such as the prevailing stand density. In the present study, young Quercus robur trees were sampled on Nelder trials, which comprise different stand densities, on four European sites differing in climatic conditions. Besides the estimation of logarithmically transformed power equations, Dirichlet regressions were applied for deriving biomass functions for the single compartments leaves, branches, stem and roots. Thereby, the dependence of total and compartment biomass allocation on diameter at root collar ( d 0 ), tree height and stand density is tested. The results show that besides d 0 , the local Stand Density Index (SDI l ) is an important predictor for biomass. Especially, the belowground biomass shows a significant relation to the SDI l , which is less the case for the aboveground biomass. Not considering the SDI l leads to an overestimation of the biomass productivity, especially when the stand density is high. Furthermore, the results show that the belowground biomass is lower than the aboveground biomass, but with 50–80% of the aboveground biomass still of considerable size. This indicates the importance of including stand characteristics when estimating above- and belowground tree biomass in future studies.
The distribution of carbon stocks between tree woody biomass and soil differs between Scots pine and broadleaved species (beech, oak) in European forests
While the impacts of forest management options on carbon (C) storage are well documented, the way they affect C distribution among ecosystem components remains poorly investigated. Yet, partitioning of total forest C stocks, particularly between aboveground woody biomass and the soil, greatly impacts the stability of C stocks against disturbances in forest ecosystems. This study assessed the impact of species composition and stand density on C storage in aboveground woody biomass (stem + branches), coarse roots, and soil, and their partitioning in pure and mixed forests in Europe. We used 21 triplets (5 beech-oak, 8 pine-beech, 8 pine-oak mixed stands, and their respective monocultures at the same sites) in seven European countries. We computed biomass C stocks from total stand inventories and species-specific allometric equations, and soil organic C data down to 40 cm depth. On average, the broadleaved species stored more C in aboveground woody biomass than soil, while C storage in pine was equally distributed between both components. Stand density had a strong effect on C storage in tree woody biomass but not in the soil. After controlling for stand basal area, the mixed stands had, on average, similar total C stocks (in aboveground woody biomass + coarse roots + soil) to the most performing monocultures. Although species composition and stand density affect total C stocks and its partitioning between aboveground woody biomass and soil, a large part of variability in soil C storage was unrelated to stand characteristics.