Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
10
result(s) for
"Hibbing, Michael E."
Sort by:
Bacterial competition: surviving and thriving in the microbial jungle
by
Peterson, S. Brook
,
Parsek, Matthew R.
,
Hibbing, Michael E.
in
Antibiosis
,
Bacteria
,
Bacteria - growth & development
2010
Key Points
As has been studied extensively for macroorganisms, competition between and within microbial species constitutes a crucial facet of microbial life in the environment.
Individuals in a population of a single bacterial species will be in competition with each other when nutrients are limiting. If the ecological opportunity arises (such as when populations are grown in a spatially structured environment, providing multiple niches), intraspecies competition can lead to selection for the diversification of a bacterial population.
Under some conditions, cooperation among individuals in a bacterial population can facilitate competition between groups. However, cooperation can be vulnerable to cheating.
Bacteria engage in diverse active competitive strategies. These include: accumulating and storing specific nutrients, thereby depriving potential competitors; blocking access to favourable habitats (such as binding sites on a surface) or forcing the dispersal of competitors; motility, especially when directed (chemotaxis); producing antimicrobial toxins; and interfering with competitors' signalling.
Microbial systems should be exploited further for testing ecological theories of competition. Additionally, new technologies should aid in moving the study of bacterial competition from the test tube to the natural habitats of microorganisms.
In the diverse microbial communities that are found in most natural environments, bacteria compete with their neighbours for space and resources. Here, the authors review the many active mechanisms that bacteria use to kill or impair their intra- and interspecies competitors.
Most natural environments harbour a stunningly diverse collection of microbial species. In these communities, bacteria compete with their neighbours for space and resources. Laboratory experiments with pure and mixed cultures have revealed many active mechanisms by which bacteria can impair or kill other microorganisms. In addition, a growing body of theoretical and experimental population studies indicates that the interactions within and between bacterial species can have a profound impact on the outcome of competition in nature. The next challenge is to integrate the findings of these laboratory and theoretical studies and to evaluate the predictions that they generate in more natural settings.
Journal Article
Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes
2019
Multidrug resistant (MDR)
Acinetobacter baumannii
poses a growing threat to global health. Research on
Acinetobacter
pathogenesis has primarily focused on pneumonia and bloodstream infections, even though one in five
A. baumannii
strains are isolated from urinary sites. In this study, we highlight the role of
A. baumannii
as a uropathogen. We develop the first
A. baumannii
catheter-associated urinary tract infection (CAUTI) murine model using UPAB1, a recent MDR urinary isolate. UPAB1 carries the plasmid pAB5, a member of the family of large conjugative plasmids that represses the type VI secretion system (T6SS) in multiple
Acinetobacter
strains. pAB5 confers niche specificity, as its carriage improves UPAB1 survival in a CAUTI model and decreases virulence in a pneumonia model. Comparative proteomic and transcriptomic analyses show that pAB5 regulates the expression of multiple chromosomally-encoded virulence factors besides T6SS. Our results demonstrate that plasmids can impact bacterial infections by controlling the expression of chromosomal genes.
Acinetobacter baumannii
is generally considered an opportunistic pathogen. Here, Di Venanzio et al. develop a mouse model of catheter-associated urinary tract infection and show that a plasmid confers niche specificity to an
A. baumannii
urinary isolate by regulating the expression of chromosomal genes.
Journal Article
Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis
by
Hadjifrangiskou, Maria
,
Conover, Matt S.
,
Hibbing, Michael E.
in
Animal models
,
Animals
,
Antibiotics
2016
Uropathogenic Escherichia coli (UPEC) is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs). Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs) of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A Δ lacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies. IMPORTANCE Urinary tract infections (UTIs) are one of the most common bacterial infections, impacting mostly women. Every year, millions of UTIs occur in the U.S. with most being caused by uropathogenic E. coli (UPEC). During a UTI, UPEC invade bladder cells and form an intracellular bacterial community (IBC) that allows for the bacteria to replicate protected from the host immune response. In this study, we investigated genes that are expressed by UPEC within the IBC and determined how they contribute to the formation of this specialized community. Our findings suggest that galactose is important for UPEC growth in the IBC. Additionally, we found that a gene involved in oxidative stress is also important in the regulation of a key factor needed for UPEC invasion of bladder cells. These results may open the door for the development of treatments to diminish UTI frequency and/or severity. Urinary tract infections (UTIs) are one of the most common bacterial infections, impacting mostly women. Every year, millions of UTIs occur in the U.S. with most being caused by uropathogenic E. coli (UPEC). During a UTI, UPEC invade bladder cells and form an intracellular bacterial community (IBC) that allows for the bacteria to replicate protected from the host immune response. In this study, we investigated genes that are expressed by UPEC within the IBC and determined how they contribute to the formation of this specialized community. Our findings suggest that galactose is important for UPEC growth in the IBC. Additionally, we found that a gene involved in oxidative stress is also important in the regulation of a key factor needed for UPEC invasion of bladder cells. These results may open the door for the development of treatments to diminish UTI frequency and/or severity.
Journal Article
Adaptation of Arginine Synthesis among Uropathogenic Branches of the Escherichia coli Phylogeny Reveals Adjustment to the Urinary Tract Habitat
2020
Uropathogenic Escherichia coli (UPEC) is the most common cause of human urinary tract infection (UTI). Population bottlenecks during early stages of UTI make high-throughput screens impractical for understanding clinically important later stages of UTI, such as persistence and recurrence. As UPEC is hypothesized to be adapted to these later pathogenic stages, we previously identified 29 genes evolving under positive selection in UPEC. Here, we found that 8 of these genes, including argI (which is involved in arginine biosynthesis), are important for persistence in a mouse model of UTI. Deletion of argI and other arginine synthesis genes resulted in (i) arginine auxotrophy and (ii) defects in persistent UTI. Replacement of a B2 clade argI with a non-B2 clade argI complemented arginine auxotrophy, but the resulting strain remained attenuated in its ability to cause persistent bacteriuria. Thus, argI may have a second function during UTI that is not related to simple arginine synthesis. This study demonstrates how variation in metabolic genes can impact virulence and provides insight into the mechanisms and evolution of bacterial virulence. Urinary tract infections (UTIs) are predominantly caused by uropathogenic Escherichia coli (UPEC). UPEC pathogenesis requires passage through a severe population bottleneck involving intracellular bacterial communities (IBCs) that are clonal expansions of a single invading UPEC bacterium in a urothelial superficial facet cell. IBCs occur only during acute pathogenesis. The bacteria in IBCs form the founder population that develops into persistent extracellular infections. Only a small fraction of UPEC organisms proceed through the IBC cycle, regardless of the inoculum size. This dramatic reduction in population size precludes the utility of genomic mutagenesis technologies for identifying genes important for persistence. To circumvent this bottleneck, we previously identified 29 positively selected genes (PSGs) within UPEC and hypothesized that they contribute to virulence. Here, we show that 8 of these 29 PSGs are required for fitness during persistent bacteriuria. Conversely, 7/8 of these PSG mutants showed essentially no phenotype in acute UTI. Deletion of the PSG argI leads to arginine auxotrophy. Relative to the other arg genes, argI in the B2 clade (which comprises most UPEC strains) of E. coli has diverged from argI in other E. coli clades. Replacement of argI in a UPEC strain with a non-UPEC argI allele complemented the arginine auxotrophy but not the persistent bacteriuria defect, showing that the UPEC argI allele contributes to persistent infection. These results highlight the complex roles of metabolic pathways during infection and demonstrate that evolutionary approaches can identify infection-specific gene functions downstream of population bottlenecks, shedding light on virulence and the genetic evolution of pathogenesis. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the most common cause of human urinary tract infection (UTI). Population bottlenecks during early stages of UTI make high-throughput screens impractical for understanding clinically important later stages of UTI, such as persistence and recurrence. As UPEC is hypothesized to be adapted to these later pathogenic stages, we previously identified 29 genes evolving under positive selection in UPEC. Here, we found that 8 of these genes, including argI (which is involved in arginine biosynthesis), are important for persistence in a mouse model of UTI. Deletion of argI and other arginine synthesis genes resulted in (i) arginine auxotrophy and (ii) defects in persistent UTI. Replacement of a B2 clade argI with a non-B2 clade argI complemented arginine auxotrophy, but the resulting strain remained attenuated in its ability to cause persistent bacteriuria. Thus, argI may have a second function during UTI that is not related to simple arginine synthesis. This study demonstrates how variation in metabolic genes can impact virulence and provides insight into the mechanisms and evolution of bacterial virulence.
Journal Article
Human Urine Decreases Function and Expression of Type 1 Pili in Uropathogenic Escherichia coli
by
Greene, Sarah E.
,
Hibbing, Michael E.
,
Hultgren, Scott J.
in
Adhesins, Bacterial - drug effects
,
Adhesins, Escherichia coli
,
Animal models
2015
Uropathogenic Escherichia coli (UPEC) is the primary cause of community-acquired urinary tract infections (UTIs). UPEC bind the bladder using type 1 pili, encoded by the fim operon in nearly all E. coli . Assembled type 1 pili terminate in the FimH adhesin, which specifically binds to mannosylated glycoproteins on the bladder epithelium. Expression of type 1 pili is regulated in part by phase-variable inversion of the genomic element containing the fimS promoter, resulting in phase ON (expressing) and OFF (nonexpressing) orientations. Type 1 pili are essential for virulence in murine models of UTI; however, studies of urine samples from human UTI patients demonstrate variable expression of type 1 pili. We provide insight into this paradox by showing that human urine specifically inhibits both expression and function of type 1 pili. Growth in urine induces the fimS phase OFF orientation, preventing fim expression. Urine also contains inhibitors of FimH function, and this inhibition leads to a further bias in fimS orientation toward the phase OFF state. The dual effect of urine on fimS regulation and FimH binding presents a potential barrier to type 1 pilus-mediated colonization and invasion of the bladder epithelium. However, FimH-mediated attachment to human bladder cells during growth in urine reverses these effects such that fim expression remains ON and/or turns ON. Interestingly, FimH inhibitors called mannosides also induce the fimS phase OFF orientation. Thus, the transduction of FimH protein attachment or inhibition into epigenetic regulation of type 1 pilus expression has important implications for the development of therapeutics targeting FimH function. IMPORTANCE Urinary tract infections (UTIs) are extremely common infections, frequently caused by uropathogenic Escherichia coli (UPEC), that are treated with antibiotics but often recur. Therefore, UTI treatment both is complicated by and contributes to bacterial antibiotic resistance. Thus, it is important to understand UTI pathogenesis to devise novel strategies and targets for prevention and treatment. Based on evidence from disease epidemiology and mouse models of infection, UPEC relies heavily on type 1 pili to attach to and invade the bladder epithelium during initial stages of UTI. Here, we demonstrate that the negative effect of planktonic growth in human urine on both the function and expression of type 1 pili is overcome by attachment to bladder epithelial cells, representing a strategy to subvert this alternative innate defense mechanism. Furthermore, this dually inhibitory action of urine is a mechanism shared with recently developed anti-type 1 pilus molecules, highlighting the idea that further development of antivirulence strategies targeting pili may be particularly effective for UPEC. Urinary tract infections (UTIs) are extremely common infections, frequently caused by uropathogenic Escherichia coli (UPEC), that are treated with antibiotics but often recur. Therefore, UTI treatment both is complicated by and contributes to bacterial antibiotic resistance. Thus, it is important to understand UTI pathogenesis to devise novel strategies and targets for prevention and treatment. Based on evidence from disease epidemiology and mouse models of infection, UPEC relies heavily on type 1 pili to attach to and invade the bladder epithelium during initial stages of UTI. Here, we demonstrate that the negative effect of planktonic growth in human urine on both the function and expression of type 1 pili is overcome by attachment to bladder epithelial cells, representing a strategy to subvert this alternative innate defense mechanism. Furthermore, this dually inhibitory action of urine is a mechanism shared with recently developed anti-type 1 pilus molecules, highlighting the idea that further development of antivirulence strategies targeting pili may be particularly effective for UPEC.
Journal Article
Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection
by
Janetka, James W.
,
Kalas, Vasilios
,
Mydock-McGrane, Laurel K.
in
Adhesins
,
Alternative medicine
,
Antagonists
2018
Treatment of bacterial infections is becoming a serious clinical challenge due to the global dissemination of multidrug antibiotic resistance, necessitating the search for alternative treatments to disarm the virulence mechanisms underlying these infections. Uropathogenic Escherichia coli (UPEC) employs multiple chaperone–usher pathway pili tipped with adhesins with diverse receptor specificities to colonize various host tissues and habitats. For example, UPEC F9 pili specifically bind galactose or N-acetylgalactosamine epitopes on the kidney and inflamed bladder. Using X-ray structure-guided methods, virtual screening, and multiplex ELISA arrays, we rationally designed aryl galactosides and N-acetylgalactosaminosides that inhibit the F9 pilus adhesin FmlH. The lead compound, 29β-NAc, is a biphenyl N-acetyl-β-galactosaminoside with a K
i of ∼90 nM, representing a major advancement in potency relative to the characteristically weak nature of most carbohydrate–lectin interactions. 29β-NAc binds tightly to FmlH by engaging the residues Y46 through edge-to-face π-stacking with its A-phenyl ring, R142 in a salt-bridge interaction with its carboxylate group, and K132 through water-mediated hydrogen bonding with its N-acetyl group. Administration of 29β-NAc in a mouse urinary tract infection (UTI) model significantly reduced bladder and kidney bacterial burdens, and coadministration of 29β-NAc and mannoside 4Z269, which targets the type 1 pilus adhesin FimH, resulted in greater elimination of bacteria from the urinary tract than either compound alone. Moreover, FmlH specifically binds healthy human kidney tissue in a 29β-NAc–inhibitable manner, suggesting a key role for F9 pili in human kidney colonization. Thus, these glycoside antagonists of FmlH represent a rational antivirulence strategy for UPEC-mediated UTI treatment.
Journal Article
Inhibition and dispersal of Agrobacterium tumefaciens biofilms by a small diffusible Pseudomonas aeruginosa exoproduct(s)
by
Hibbing, Michael E.
,
Fuqua, Clay
in
Agrobacterium tumefaciens - drug effects
,
Agrobacterium tumefaciens - growth & development
,
Bacteria
2012
Environmental biofilms often contain mixed populations of different species. In these dense communities, competition between biofilm residents for limited nutrients such as iron can be fierce, leading to the evolution of competitive factors that affect the ability of competitors to grow or form biofilms. We have discovered a compound(s) present in the conditioned culture fluids of
Pseudomonas aeruginosa
that disperses and inhibits the formation of biofilms produced by the facultative plant pathogen
Agrobacterium tumefaciens
. The inhibitory activity is strongly induced when
P. aeruginosa
is cultivated in iron-limited conditions, but it does not function through iron sequestration. In addition, the production of the biofilm inhibitory activity is not regulated by the global iron regulatory protein Fur, the iron-responsive extracytoplasmic function σ factor PvdS, or three of the recognized
P. aeruginosa
quorum-sensing systems. In addition, the compound(s) responsible for the inhibition and dispersal of
A. tumefaciens
biofilm formation is likely distinct from the recently identified
P. aeruginosa
dispersal factor,
cis
-2-decenoic acid (CDA), as dialysis of the culture fluids showed that the inhibitory compound was larger than CDA and culture fluids that dispersed and inhibited biofilm formation by
A. tumefaciens
had no effect on biofilm formation by
P. aeruginosa
.
Journal Article
Dual adhesive unipolar polysaccharides synthesized by overlapping biosynthetic pathways in Agrobacterium tumefaciens
by
Xu, Jing
,
Hardy, Gail G
,
Danhorn, Thomas
in
Agrobacterium tumefaciens
,
Genetic screening
,
Microbiology
2021
Agrobacterium tumefaciens, is a member of the Alphaproteobacteria that pathogenizes plants, and associates with biotic and abiotic surfaces via a single cellular pole. A. tumefaciens produces the unipolar polysaccharide (UPP) at the site of surface contact. UPP production is normally surface-contact inducible, but elevated levels of the second messenger cyclic diguanylate monophosphate (cdGMP) bypass this requirement. Multiple lines of evidence suggest that the UPP has a central polysaccharide component. Using an A. tumefaciens derivative with elevated cdGMP and mutationally disabled for other dispensable polysaccharides, a series of related genetic screens have identified a large number of genes involved in UPP biosynthesis, most of which are Wzx-Wzy-type polysaccharide biosynthetic components. Extensive analyses of UPP production in these mutants have revealed that the UPP is comprised of two genetically, chemically and spatially discrete forms of polysaccharide, and that each requires a specific Wzy-type polymerase. Other important biosynthetic, processing and regulatory functions for UPP production are also revealed, some of which are common to both polysaccharides, and a subset of which are specific to each species. Many of the UPP genes identified are conserved among diverse rhizobia, whereas others are more lineage specific. Competing Interest Statement The authors have declared no competing interest.
Domain agnostic online semantic segmentation for multi-dimensional time series
by
Kaplan, Andrew
,
Chin-Chia, Michael Yeh
,
Shaghayegh Gharghabi
in
Algorithms
,
Data transmission
,
Multidimensional data
2019
Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm’s superiority over current solutions.
Journal Article
Correction to: Domain agnostic online semantic segmentation for multi-dimensional time series
2019
The article Domain agnostic online semantic segmentation for multi-dimensional time series, written by Shaghayegh Gharghabi, Chin-Chia Michael Yeh, Yifei Ding, Wei Ding, Paul Hibbing, Samuel LaMunion, Andrew Kaplan, Scott E. Crouter, Eamonn Keogh was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 25 September 2018 without open access.
Journal Article